Prediction of Indirect Tensile Strength of Intermediate Layer of Asphalt Pavements Using Artificial Neural Network Model

[1]  Rafiqul A. Tarefder,et al.  A study of asphalt aging using Indirect Tensile Strength test , 2015 .

[2]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[3]  Jin-Hoon Jeong,et al.  Development of Remodeling Index Model to Predict Priority of Large-Scale Repair Works of Deteriorated Expressway Concrete Pavements in Korea , 2019 .

[4]  Sunghwan Kim,et al.  Neural Networks Application in Pavement Infrastructure Materials , 2009, Intelligent and Soft Computing in Infrastructure Systems Engineering.

[5]  Orazio Giustolisi,et al.  Improving generalization of artificial neural networks in rainfall–runoff modelling / Amélioration de la généralisation de réseaux de neurones artificiels pour la modélisation pluie-débit , 2005 .

[6]  W. Ronald Hudson,et al.  APPLICATION OF THE INDIRECT TENSILE TEST TO STABILIZED MATERIALS , 1968 .

[7]  A. T. C. Goh,et al.  Back-propagation neural networks for modeling complex systems , 1995, Artif. Intell. Eng..

[8]  G. David Garson,et al.  A Comparison of Neural Network and Expert Systems Algorithms with Common Multivariate Procedures for Analysis of Social Science Data , 1991 .

[9]  R L Baus,et al.  Mechanistic-empirical Pavement Design Guide Implementation , 2010 .

[10]  Stefan Fritsch,et al.  neuralnet: Training of Neural Networks , 2010, R J..

[11]  Christopher T. Rhodes,et al.  Artificial Neural Networks: Implications for Pharmaceutical Sciences , 1995 .

[12]  Mia Hubert,et al.  Anomaly detection by robust statistics , 2017, WIREs Data Mining Knowl. Discov..

[13]  Teresa M Adams,et al.  Pavement Roughness Modeling Using Back‐Propagation Neural Networks , 2004 .

[14]  Ruey-Shiang Guh EFFECTS OF NON-NORMALITY ON ARTIFICIAL NEURAL NETWORK BASED CONTROL CHART PATTERN RECOGNIZER , 2002 .

[15]  George D. Magoulas,et al.  New globally convergent training scheme based on the resilient propagation algorithm , 2005, Neurocomputing.

[16]  M. Mamlouk,et al.  Effects of the International Roughness Index and Rut Depth on Crash Rates , 2018, Transportation Research Record: Journal of the Transportation Research Board.

[17]  Christian Igel,et al.  Empirical evaluation of the improved Rprop learning algorithms , 2003, Neurocomputing.

[18]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[19]  T D Gillespie,et al.  GUIDELINES FOR CONDUCTING AND CALIBRATING ROAD ROUGHNESS MEASUREMENTS , 1986 .

[20]  Hongren Gong,et al.  Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks , 2018, Construction and Building Materials.

[21]  Usha A. Kumar,et al.  Comparison of neural networks and regression analysis: A new insight , 2005, Expert Syst. Appl..

[22]  H. Altun,et al.  Treatment of multi-dimensional data to enhance neural network estimators in regression problems , 2006 .

[23]  Muhammad Mubaraki Highway subsurface assessment using pavement surface distress and roughness data , 2016 .

[24]  Serji N. Amirkhanian,et al.  Estimating Indirect Tensile Strength of Mixtures Containing Anti-Stripping Agents Using an Artificial Neural Network Approach , 2009 .

[25]  Sajjad Ahmad,et al.  Suspended sediment load prediction of river systems: An artificial neural network approach , 2011 .

[26]  E. B. Wilson,et al.  The Distribution of Chi-Square. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Martin A. Riedmiller,et al.  Advanced supervised learning in multi-layer perceptrons — From backpropagation to adaptive learning algorithms , 1994 .