The Geometry of Rank-One Tensor Completion
暂无分享,去创建一个
Thomas Kahle | Mario Kummer | Kaie Kubjas | Zvi Rosen | Thomas Kahle | Zvi Rosen | Mario Kummer | Kaie Kubjas
[1] R. Bro,et al. Practical aspects of PARAFAC modeling of fluorescence excitation‐emission data , 2003 .
[2] Franz J. Király,et al. Error-Minimizing Estimates and Universal Entry-Wise Error Bounds for Low-Rank Matrix Completion , 2013, NIPS.
[3] Rafael H. Villarreal,et al. Rees algebras of edge ideals , 1995 .
[4] Yaoliang Yu,et al. Approximate Low-Rank Tensor Learning , 2014 .
[5] Zvi Rosen,et al. Matrix Completion for the Independence Model , 2014, 1407.3254.
[6] Pierre Comon,et al. Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.
[7] T. Willmore. Algebraic Geometry , 1973, Nature.
[8] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[9] Ming Yuan,et al. On Tensor Completion via Nuclear Norm Minimization , 2014, Foundations of Computational Mathematics.
[10] Stephen P. Boyd,et al. A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
[11] J. Kruskal. Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .
[12] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[13] B. Recht,et al. Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .
[14] B. Sturmfels,et al. Binomial Ideals , 1994, alg-geom/9401001.
[15] Takayuki Hibi,et al. Toric Ideals Generated by Quadratic Binomials , 1999 .
[16] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[17] F. Király,et al. Obtaining error-minimizing estimates and universal entry-wise error bounds for low-rank matrix completion , 2013 .
[18] Dinesh Manocha,et al. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[19] Tamara G. Kolda,et al. Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.
[20] Cynthia Vinzant,et al. Determinantal representations of hyperbolic plane curves: An elementary approach , 2012, J. Symb. Comput..
[21] E. Davidson,et al. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents , 1981 .
[22] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[23] Johan A. K. Suykens,et al. A Rank-One Tensor Updating Algorithm for Tensor Completion , 2015, IEEE Signal Processing Letters.
[24] Sonja Petrović,et al. Toric algebra of hypergraphs , 2012, 1206.1904.
[25] Leiba Rodman,et al. Ranks of Completions of Partial Matrices , 1989 .
[26] WonkaPeter,et al. Tensor Completion for Estimating Missing Values in Visual Data , 2013 .
[27] Louis Theran,et al. Algebraic Matroids with Graph Symmetry , 2013, 1312.3777.
[28] Franz J. Király,et al. The algebraic combinatorial approach for low-rank matrix completion , 2012, J. Mach. Learn. Res..
[29] Rainer Sinn. Algebraic Boundaries of $$\mathrm{SO}(2)$$SO(2)-Orbitopes , 2013, Discret. Comput. Geom..
[30] Jieping Ye,et al. Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[31] J. A. Ward,et al. Rank-one completions of partial matrices and completely rank-nonincreasing linear functionals , 2006 .
[32] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[33] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[34] Baoxin Li,et al. Tensor completion for on-board compression of hyperspectral images , 2010, 2010 IEEE International Conference on Image Processing.
[35] Amit Singer,et al. Uniqueness of Low-Rank Matrix Completion by Rigidity Theory , 2009, SIAM J. Matrix Anal. Appl..
[36] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[37] Bo Huang,et al. Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.