Theoretical Study of an Abstract Bubble Vibration Model
暂无分享,去创建一个
[1] B. Perthame,et al. Existence of solutions of the hyperbolic Keller-Segel model , 2006, math/0612485.
[2] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[3] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[4] Juliet Ryan,et al. Application of an AMR strategy to an abstract bubble vibration model , 2009 .
[5] V. I. Yudovich,et al. Non-stationary flow of an ideal incompressible liquid , 1963 .
[6] Thermodynamics of self-gravitating systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] P. Lions,et al. Ordinary differential equations, transport theory and Sobolev spaces , 1989 .
[8] B. Helffer,et al. The Semiclassical Regime for Ablation Front Models , 2007 .
[9] James A. Sethian,et al. THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .
[10] Stéphane Dellacherie,et al. Numerical resolution of a potential diphasic low Mach number system , 2007, J. Comput. Phys..
[11] S. Dellacherie. ON A DIPHASIC LOW MACH NUMBER SYSTEM , 2005 .
[12] C. J. Adkins. Thermodynamics and statistical mechanics , 1972, Nature.
[13] Pierre Fabrie,et al. Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .
[14] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[15] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[16] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[17] P. Embid,et al. Well-posedness of the nonlinear equations for zero mach number combustion , 1987 .
[18] Yohan Penel,et al. Existence of global solutions to the 1D Abstract Bubble Vibration model , 2013, Differential and Integral Equations.
[19] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[20] Der-Chen Chang,et al. FUNCTIONS OF BOUNDED MEAN OSCILLATION , 2006 .