Flapping flight for biomimetic robotic insects: part I-system modeling

This paper presents the mathematical modeling of flapping flight inch-size micro aerial vehicles (MAVs), namely micromechanical flying insects (MFIs). The target robotic insects are electromechanical devices propelled by a pair of independent flapping wings to achieve sustained autonomous flight, thereby mimicking real insects. In this paper, we describe the system dynamic models which include several elements that are substantially different from those present in fixed or rotary wing MAVs. These models include the wing-thorax dynamics, the flapping flight aerodynamics at a low Reynolds number regime, the body dynamics, and the biomimetic sensory system consisting of ocelli, halteres, magnetic compass, and optical flow sensors. The mathematical models are developed based on biological principles, analytical models, and experimental data. They are presented in the Virtual Insect Flight Simulator (VIFS) and are integrated together to give a realistic simulation for MFI and insect flight. VIFS is a software tool intended for modeling flapping flight mechanisms and for testing and evaluating the performance of different flight control algorithms

[1]  Dong Sun,et al.  Micro air vehicle: configuration, analysis, fabrication, and test , 2004, IEEE/ASME Transactions on Mechatronics.

[2]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[3]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[4]  M. Dickinson,et al.  Haltere Afferents Provide Direct, Electrotonic Input to a Steering Motor Neuron in the Blowfly, Calliphora , 1996, The Journal of Neuroscience.

[5]  Mao Sun,et al.  Lift and power requirements of hovering flight in Drosophila virilis. , 2002, The Journal of experimental biology.

[6]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[7]  R. Hengstenberg Mechanosensory control of compensatory head roll during flight in the blowflyCalliphora erythrocephala Meig. , 1988, Journal of Comparative Physiology A.

[8]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[9]  Robert J. Wood,et al.  Towards flapping wing control for a micromechanical flying insect , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  K. Pister,et al.  Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication , 2003 .

[11]  W. Reichardt,et al.  Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly , 1988, Biological Cybernetics.

[12]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[13]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[14]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[15]  Bong Wie,et al.  Space Vehicle Dynamics and Control , 1998 .

[16]  G K Taylor,et al.  Mechanics and aerodynamics of insect flight control , 2001, Biological reviews of the Cambridge Philosophical Society.

[17]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[18]  Jeffrey A. Walker,et al.  Rotational lift: something different or more of the same? , 2002, The Journal of experimental biology.

[19]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[20]  F.S. Hover,et al.  Review of experimental work in biomimetic foils , 2004, IEEE Journal of Oceanic Engineering.

[21]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[22]  Robert J. Wood,et al.  Halteres for the micromechanical flying insect , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[23]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[24]  C. Taylor Contribution of Compound Eyes and Ocelli to Steering Of Locusts in Flight: I. Behavioural Analysis , 1981 .

[25]  Svetha Venkatesh,et al.  Robot navigation inspired by principles of insect vision , 1999, Robotics Auton. Syst..

[26]  Robert J. Wood,et al.  Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[27]  Arnold M. Kuethe,et al.  Foundations of Aerodynamics , 1959 .

[28]  M. Dickinson,et al.  The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight , 2003, Journal of Experimental Biology.

[29]  John Brady,et al.  Flying mate detection and chasing by tsetse flies (Glossina) , 1991 .

[30]  Adrian L. R. Thomas,et al.  Leading-edge vortices in insect flight , 1996, Nature.

[31]  T.N. Pornsin-Sirirak,et al.  MEMS wing technology for a battery-powered ornithopter , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[32]  Zhaoying Zhou,et al.  Micro air vehicle: configuration, analysis, fabrication, and test , 2004 .

[33]  S. Shankar Sastry,et al.  Attitude control for a micromechanical flying insect via sensor output feedback , 2004, IEEE Transactions on Robotics and Automation.

[34]  Steven Reece,et al.  UPDATE ON FLAPPING WING MICRO AIR VEHICLE RESEARCH Ongoing work to Develop a Flapping Wing, Crawling "Entomopter" , 1998 .

[35]  Adrian L. R. Thomas,et al.  FLOW VISUALIZATION AND UNSTEADY AERODYNAMICS IN THE FLIGHT OF THE HAWKMOTH, MANDUCA SEXTA , 1997 .

[36]  C. Ellington The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis , 1984 .

[37]  M. Dickinson,et al.  The effect of advance ratio on the aerodynamics of revolving wings , 2004, Journal of Experimental Biology.

[38]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part II-flight control design , 2006, IEEE Transactions on Robotics.

[39]  M. Triantafyllou,et al.  Oscillating foils of high propulsive efficiency , 1998, Journal of Fluid Mechanics.

[40]  Robert J. Wood,et al.  Dynamically tuned design of the MFI thorax , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[41]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[42]  M. Dickinson,et al.  The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. , 2002, The Journal of experimental biology.

[43]  G. Kastberger The ocelli control the flight course in honeybees , 1990 .

[44]  M. S. Tu,et al.  The Function of Dipteran Flight Muscle , 1997 .

[45]  Ronald S. Fearing,et al.  Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[46]  Robert C. Michelson,et al.  BEYOND BIOLOGICALLY-INSPIRED INSECT FLIGHT , 2003 .

[47]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[48]  Matthew T. Keennon,et al.  Development of the Black Widow Micro Air Vehicle , 2001 .

[49]  Matthew Garratt,et al.  An overview of insect-inspired guidance for application in ground and airborne platforms , 2004 .

[50]  Christof Koch,et al.  An analog vlsi motion sensor based on the fly visual system , 2000 .

[51]  W. Reichardt Movement perception in insects , 1969 .

[52]  R. Ramamurti,et al.  A three-dimensional computational study of the aerodynamic mechanisms of insect flight. , 2002, The Journal of experimental biology.

[53]  I. Kroo,et al.  Development of the Mesicopter : A Miniature Autonomous Rotorcraft , 1999 .

[54]  Sanjay P Sane,et al.  The aerodynamics of insect flight , 2003, Journal of Experimental Biology.

[55]  Titus R. Neumann Modeling Insect Compound Eyes: Space-Variant Spherical Vision , 2002, Biologically Motivated Computer Vision.

[56]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[57]  Pascal Nouet,et al.  Test and Testability of a Monolithic MEMS for Magnetic Field Sensing , 2001, J. Electron. Test..