Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis

Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803–base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613–base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion–reducing capabilities.

[1]  K. Nealson,et al.  Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor , 1988, Science.

[2]  C. Myers,et al.  Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 , 1992, Journal of bacteriology.

[3]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[4]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[5]  K. Nealson,et al.  A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens , 1994, Journal of bacteriology.

[6]  K. Nealson,et al.  Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. , 1994, Annual review of microbiology.

[7]  Owen White,et al.  TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects , 1995 .

[8]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[9]  S. Wann,et al.  Skin and soft-tissue manifestations of Shewanella putrefaciens infection. , 1997, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[10]  C. Myers,et al.  Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1 , 1997, Journal of bacteriology.

[11]  A. Beliaev,et al.  Shewanella putrefaciens mtrB Encodes an Outer Membrane Protein Required for Fe(III) and Mn(IV) Reduction , 1998, Journal of bacteriology.

[12]  T. Zeuthen,et al.  Bidirectional Water Fluxes and Specificity for Small Hydrophilic Molecules in Aquaporins 0–5* , 1998, The Journal of Biological Chemistry.

[13]  S. Spinelli,et al.  Kinetics and interaction studies between cytochrome c3 and Fe‐only hydrogenase from Desulfovibrio vulgaris hildenborough , 1998, Proteins.

[14]  S. Salzberg,et al.  Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.

[15]  J. Janda,et al.  Biochemical and Pathogenic Properties ofShewanella alga and Shewanella putrefaciens , 1998, Journal of Clinical Microbiology.

[16]  P. Watnick,et al.  A Role for the Mannose-Sensitive Hemagglutinin in Biofilm Formation by Vibrio cholerae El Tor , 1999, Journal of bacteriology.

[17]  S. Salzberg,et al.  Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. , 1999, Genomics.

[18]  E. G. Frank,et al.  UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D C White,et al.  Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. , 1999, International journal of systematic bacteriology.

[20]  Z. Livneh,et al.  The Mutagenesis Protein UmuC Is a DNA Polymerase Activated by UmuD′, RecA, and SSB and Is Specialized for Translesion Replication* , 1999, The Journal of Biological Chemistry.

[21]  S. Salzberg,et al.  Evidence for symmetric chromosomal inversions around the replication origin in bacteria , 2000, Genome Biology.

[22]  D. Richardson,et al.  Bacterial respiration: a flexible process for a changing environment. , 2000, Microbiology.

[23]  J. Collado-Vides,et al.  The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. , 2000, Nucleic acids research.

[24]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[25]  A. Kropinski Sequence of the Genome of the Temperate, Serotype-Converting,Pseudomonas aeruginosa Bacteriophage D3 , 2000, Journal of bacteriology.

[26]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[27]  R. Hendrix,et al.  Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. , 2000, Journal of molecular biology.

[28]  Periplasmic methacrylate reductase activity in Wolinella succinogenes , 2001, Archives of Microbiology.

[29]  L. Gram,et al.  Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces , 2001, Applied and Environmental Microbiology.

[30]  Jane W. Marsh,et al.  The Mannose-Sensitive Hemagglutinin ofVibrio cholerae Promotes Adherence to Zooplankton , 2001, Applied and Environmental Microbiology.

[31]  T. Beveridge,et al.  Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions Between Shewanella and α-FeOOH , 2001, Science.

[32]  C. Myers,et al.  Role for Outer Membrane Cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in Reduction of Manganese Dioxide , 2001, Applied and Environmental Microbiology.

[33]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[34]  Fan Yang,et al.  TIGRFAMs: a protein family resource for the functional identification of proteins , 2001, Nucleic Acids Res..

[35]  Ronald W. Davis,et al.  The Composite Genome of the Legume Symbiont Sinorhizobium meliloti , 2001, Science.

[36]  A. Bellmann,et al.  Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. , 2001, Microbiology.

[37]  T J Beveridge,et al.  Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. , 2001, Science.

[38]  Ian T. Paulsen,et al.  Complete genome sequence of Caulobacter crescentus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Tettelin,et al.  Mu-Like Prophage in Serogroup B Neisseria meningitidis Coding for Surface-Exposed Antigens , 2001, Infection and Immunity.

[40]  G. Voordouw,et al.  Effects of Deletion of Genes Encoding Fe-Only Hydrogenase of Desulfovibrio vulgaris Hildenborough on Hydrogen and Lactate Metabolism , 2002, Journal of bacteriology.

[41]  Brenda Little,et al.  The role of biomineralization in microbiologically influenced corrosion , 2004, Biodegradation.