Photoluminescence from chemically exfoliated MoS2.

A two-dimensional crystal of molybdenum disulfide (MoS2) monolayer is a photoluminescent direct gap semiconductor in striking contrast to its bulk counterpart. Exfoliation of bulk MoS2 via Li intercalation is an attractive route to large-scale synthesis of monolayer crystals. However, this method results in loss of pristine semiconducting properties of MoS2 due to structural changes that occur during Li intercalation. Here, we report structural and electronic properties of chemically exfoliated MoS2. The metastable metallic phase that emerges from Li intercalation was found to dominate the properties of as-exfoliated material, but mild annealing leads to gradual restoration of the semiconducting phase. Above an annealing temperature of 300 °C, chemically exfoliated MoS2 exhibit prominent band gap photoluminescence, similar to mechanically exfoliated monolayers, indicating that their semiconducting properties are largely restored.

[1]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[2]  Christian Kisielowski,et al.  Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. , 2011, Angewandte Chemie.

[3]  Sungjae Cho,et al.  Insulating behavior in ultrathin bismuth selenide field effect transistors. , 2011, Nano letters.

[4]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[5]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[6]  S. Morrison,et al.  Inclusion Systems of Organic Molecules in Restacked Single-Layer Molybdenum Disulfide , 1989, Science.

[7]  S. Franssila,et al.  Thin Solid Films , 2009 .

[8]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[9]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[10]  R. Frindt,et al.  Scanning tunneling microscopy of single-layer MoS2 in water and butanol , 1992 .

[11]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[12]  F. Wypych,et al.  1T-MoS2, a new metallic modification of molybdenum disulfide , 1992 .

[13]  Yang,et al.  Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. , 1991, Physical review. B, Condensed matter.

[14]  S. Morrison,et al.  Thin oriented films of molybdenum disulphide , 1990 .

[15]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[16]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[17]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Roxlo,et al.  Bulk and surface optical absorption in molybdenum disulfide , 1987 .

[19]  Yang,et al.  Structure of single-molecular-layer MoS2. , 1991, Physical review. B, Condensed matter.

[20]  G. Frey,et al.  Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[22]  M. Kanatzidis,et al.  Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography , 1999 .

[23]  R. Tenne,et al.  Inorganic nanotubes and fullerene-like nanoparticles , 2006, Nature nanotechnology.

[24]  Renzhi Ma,et al.  Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites , 2010, Advanced materials.

[25]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[26]  B. L. Evans,et al.  The Band Edge Excitons in 2HMoS2 , 1976 .

[27]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[28]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[29]  W. Jaegermann,et al.  Li intercalation across and along the van der Waals surfaces of MoS2(0001) , 1995 .

[30]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[31]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[32]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[33]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[34]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[35]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  Hagai Cohen,et al.  Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. , 2003, Journal of the American Chemical Society.

[38]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[39]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[40]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[41]  W. M. Sears,et al.  Photovoltaic effect and optical absorption in MoS2 , 1982 .

[42]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.