Crystal structure of designed PX domain from cytokine-independent survival kinase and implications on evolution-based protein engineering.

[1]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[2]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[3]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[4]  M G Rossmann,et al.  The molecular replacement method. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[5]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[7]  C E Shannon,et al.  The mathematical theory of communication. 1963. , 1997, M.D. computing : computers in medical practice.

[8]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[9]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[10]  S. Henikoff,et al.  Amino acid substitution matrices. , 2000, Advances in protein chemistry.

[11]  Dan Liu,et al.  Identification of CISK, a new member of the SGK kinase family that promotes IL-3-dependent survival , 2000, Current Biology.

[12]  Roger L. Williams,et al.  The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. , 2001, Molecular cell.

[13]  Jun Xu,et al.  Regulation of cytokine-independent survival kinase (CISK) by the Phox homology domain and phosphoinositides , 2001, The Journal of cell biology.

[14]  Simon Andrews,et al.  The PX domain: a new phosphoinositide-binding module. , 2002, Journal of cell science.

[15]  Josep Rizo,et al.  Solution structure of the Vam7p PX domain. , 2002, Biochemistry.

[16]  Vijay S Pande,et al.  Increased detection of structural templates using alignments of designed sequences , 2003, Proteins.

[17]  A. Sali,et al.  Modeller: generation and refinement of homology-based protein structure models. , 2003, Methods in enzymology.

[18]  D. Baker,et al.  Design of a Novel Globular Protein Fold with Atomic-Level Accuracy , 2003, Science.

[19]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[20]  J. Onuchic,et al.  Theory of Protein Folding This Review Comes from a Themed Issue on Folding and Binding Edited Basic Concepts Perfect Funnel Landscapes and Common Features of Folding Mechanisms , 2022 .

[21]  I. Bataronov,et al.  Processing of X-Ray Diffraction Data in Structure Investigations of Amorphous Metal Oxides , 2004 .

[22]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[23]  Zhou Songyang,et al.  Structural Basis of Membrane Targeting by the Phox Homology Domain of Cytokine-independent Survival Kinase (CISK-PX)* , 2004, Journal of Biological Chemistry.

[24]  Yang Zhang,et al.  Scoring function for automated assessment of protein structure template quality , 2004, Proteins.

[25]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[26]  P. Bradley,et al.  Toward High-Resolution de Novo Structure Prediction for Small Proteins , 2005, Science.

[27]  A. Hounslow,et al.  Determinants of the endosomal localization of sorting nexin 1. , 2005, Molecular biology of the cell.

[28]  W. P. Russ,et al.  Evolutionary information for specifying a protein fold , 2005, Nature.

[29]  Christopher T. Saunders,et al.  Recapitulation of protein family divergence using flexible backbone protein design. , 2005, Journal of molecular biology.

[30]  Christodoulos A. Floudas,et al.  Advances in protein structure prediction and de novo protein design : A review , 2006 .

[31]  Rama Ranganathan,et al.  Knowledge-based potentials in protein design. , 2006, Current opinion in structural biology.

[32]  Pnur BnlqN Moonn,et al.  Solution of the Structure , 2007 .

[33]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[34]  Hong Cheng,et al.  De novo design of a single-chain diphenylporphyrin metalloprotein. , 2007, Journal of the American Chemical Society.

[35]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[36]  Fei Long,et al.  ARP/wARP and molecular replacement: the next generation , 2007, Acta crystallographica. Section D, Biological crystallography.

[37]  Yang Zhang Progress and challenges in protein structure prediction. , 2008, Current opinion in structural biology.

[38]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[39]  Chinmay Y. Majmudar,et al.  Mocr: a novel fusion tag for enhancing solubility that is compatible with structural biology applications. , 2009, Protein expression and purification.

[40]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[41]  Yang Zhang Protein structure prediction: when is it useful? , 2009, Current opinion in structural biology.

[42]  Yang Zhang,et al.  How significant is a protein structure similarity with TM-score = 0.5? , 2010, Bioinform..

[43]  William B. Liechty,et al.  Polymers for drug delivery systems. , 2010, Annual review of chemical and biomolecular engineering.

[44]  Tanja Kortemme,et al.  RosettaBackrub—a web server for flexible backbone protein structure modeling and design , 2010, Nucleic Acids Res..

[45]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[46]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[47]  Yang Zhang,et al.  Computational protein design and large-scale assessment by I-TASSER structure assembly simulations. , 2011, Journal of molecular biology.

[48]  Yang Zhang,et al.  Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field , 2012, Proteins.

[49]  H. K. Fung,et al.  De novo peptide design with C3a receptor agonist and antagonist activities: theoretical predictions and experimental validation. , 2012, Journal of medicinal chemistry.

[50]  D. Baker,et al.  Principles for designing ideal protein structures , 2012, Nature.

[51]  K. Moravcevic,et al.  Conditional peripheral membrane proteins: facing up to limited specificity. , 2012, Structure.

[52]  Yang Zhang,et al.  EvoDesign: de novo protein design based on structural and evolutionary profiles , 2013, Nucleic Acids Res..

[53]  Yang Zhang,et al.  An Evolution-Based Approach to De Novo Protein Design and Case Study on Mycobacterium tuberculosis , 2013, PLoS Comput. Biol..

[54]  L. Weisman,et al.  Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics , 2013, Proceedings of the National Academy of Sciences.

[55]  N. Koga,et al.  Principles for Designing Ideal Protein Structures , 2013 .

[56]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[57]  James M Aramini,et al.  Assessment of template‐based protein structure predictions in CASP10 , 2014, Proteins.