Effect of microstructure on high cycle fatigue behavior of brass processed by laser shock peening

[1]  Fernando Casanova,et al.  Fatigue failure of the bolts connecting a Francis turbine with the shaft , 2018, Engineering Failure Analysis.

[2]  Takayuki Kitamura,et al.  In situ observation on formation process of nanoscale cracking during tension-compression fatigue of single crystal copper micron-scale specimen , 2018, Acta Materialia.

[3]  S. Luo,et al.  Regain the fatigue strength of laser additive manufactured Ti alloy via laser shock peening , 2018, Journal of Alloys and Compounds.

[4]  Jianzhong Zhou,et al.  Influence of cryogenic treatment prior to laser peening on mechanical properties and microstructural characteristics of TC6 titanium alloy , 2018 .

[5]  Yuan Tian,et al.  Exploring the fatigue strength improvement of Cu-Al alloys , 2018 .

[6]  S. Ni,et al.  Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation. , 2018, Micron.

[7]  Z. Zhang,et al.  Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels , 2018 .

[8]  Lin Xiao,et al.  Cyclic deformation and microcrack initiation during stress controlled high cycle fatigue of a titanium alloy , 2018 .

[9]  D. Qian,et al.  Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy , 2017 .

[10]  D. Qian,et al.  Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy , 2017 .

[11]  M. Hameed,et al.  Effect of laser shock peening on the hardness of AL-7075 alloy , 2017, Journal of King Saud University - Science.

[12]  Yalin Dong,et al.  Laser shock peening induced residual stresses and the effect on crack propagation behavior , 2017 .

[13]  Sumit Ghosh,et al.  Effect of SFE on tensile and fatigue behavior of ultrafine grained Cu-Zn and Cu-Al alloys developed by cryo-rolling/forging , 2017 .

[14]  K. Luo,et al.  Tensile properties and surface nanocrystallization analyses of H62 brass subjected to room-temperature and warm laser shock peening , 2017 .

[15]  Mingzhen Ma,et al.  Effect of microstructure on high cycle fatigue behavior of Ti-20Zr-6.5Al-4V alloy , 2017 .

[16]  M. Kamaraj,et al.  Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V , 2016 .

[17]  M. Ge,et al.  Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy , 2016 .

[18]  Kyung-Jo Park,et al.  Variation of monotonic strain in copper thin films during fatigue testing , 2016 .

[19]  J. Grum,et al.  Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651 , 2016 .

[20]  Dingfei Zhang,et al.  Microstructure evolution during high cycle fatigue in Mg–6Zn–1Mn alloy , 2016 .

[21]  Jianzhong Zhou,et al.  Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy , 2016 .

[22]  Jianzhong Zhou,et al.  On the influence of laser peening with different coverage areas on fatigue response and fracture behavior of Ti–6Al–4V alloy , 2015 .

[23]  S. Castagne,et al.  EBSD analysis of plastic deformation of copper foils by flexible pad laser shock forming , 2015 .

[24]  M. Preuss,et al.  Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth , 2015 .

[25]  Weifeng He,et al.  Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts , 2014 .

[26]  T. Kitamura,et al.  Formation of slip bands in poly-crystalline nano-copper under high-cycle fatigue of fully-reversed loading , 2014 .

[27]  Qipeng Li,et al.  Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance , 2014 .

[28]  P. Zhang,et al.  Improved fatigue properties of ultrafine-grained copper under cyclic torsion loading , 2013 .

[29]  Xiaolei Wu,et al.  Grain size effect on deformation twinning and detwinning , 2013, Journal of Materials Science.

[30]  Jianzhong Zhou,et al.  Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening , 2012 .

[31]  Ji-Ho Song,et al.  Plastic deformation behavior analysis of an electrodeposited copper thin film under fatigue loading , 2011 .

[32]  Z. Zhang,et al.  Fatigue strengths of Cu–Be alloy with high tensile strengths , 2010 .

[33]  S. Stanzl-Tschegg,et al.  Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold , 2010 .

[34]  Xiaoyan Song,et al.  Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu , 2009 .

[35]  H. Mughrabi Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage , 2009 .

[36]  Z. Yao,et al.  Experimental study on laser shock processing of brass , 2007 .

[37]  M. Horstemeyer,et al.  Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy , 2007 .

[38]  S. G. Srinivasan,et al.  Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation , 2005 .

[39]  W. Zhou,et al.  Effect of microstructure on high cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy , 2017 .

[40]  X. Ren,et al.  High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening , 2014 .

[41]  Yu Zhou,et al.  Microstructure and corrosion resistance of modified 2024 Al alloy using surface mechanical attrition treatment combined with microarc oxidation process , 2011 .

[42]  W. Soboyejo,et al.  An Investigation of Fatigue Crack Nucleation and Growth in a Ti–6Al–4V/TiB in Situ Composite , 2004 .