Epac 1 Is Activated by Soluble Adenylyl Cyclase During Hypoxia / Reoxygenation to Transduce Cardiomyocyte Death

[1]  A. Cohen-Solal,et al.  Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension , 2016, Hypertension.

[2]  V. Korolchuk,et al.  Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure. , 2016, Antioxidants and Redox Signaling.

[3]  R. Fischmeister,et al.  A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death , 2016, Cell Death and Disease.

[4]  F. Lezoualc’h,et al.  Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. , 2016, Circulation research.

[5]  P. Lipp,et al.  Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. , 2015, Cell metabolism.

[6]  D. Bers,et al.  Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes , 2015, Proceedings of the National Academy of Sciences.

[7]  P. Bernardi,et al.  The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection , 2015, Journal of molecular and cellular cardiology.

[8]  M. Zaccolo,et al.  cAMP signaling in subcellular compartments. , 2014, Pharmacology & therapeutics.

[9]  B. van de Water,et al.  Epac-Rap signaling reduces oxidative stress in the tubular epithelium. , 2014, Journal of the American Society of Nephrology : JASN.

[10]  J. Zweier,et al.  Cardiac Mitochondria and Reactive Oxygen Species Generation , 2014, Circulation research.

[11]  A. Holmgren,et al.  The thioredoxin antioxidant system. , 2014, Free radical biology & medicine.

[12]  Robert S. Balaban,et al.  The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU) , 2013, Nature Cell Biology.

[13]  N. Mewton,et al.  Depressing Mitochondria-Reticulum Interactions Protects Cardiomyocytes From Lethal Hypoxia-Reoxygenation Injury , 2013, Circulation.

[14]  Konstantinos Lefkimmiatis,et al.  The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics , 2013, The Journal of cell biology.

[15]  T. Pozzan,et al.  Mitochondrial Ca²⁺ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. , 2013, Cell metabolism.

[16]  A. Dominguez-Rodriguez,et al.  Epac in cardiac calcium signaling. , 2013, Journal of molecular and cellular cardiology.

[17]  G. Baillie,et al.  Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. , 2013, Cellular signalling.

[18]  D. Bers,et al.  Epac2 Mediates Cardiac &bgr;1-Adrenergic–Dependent Sarcoplasmic Reticulum Ca2+ Leak and Arrhythmia , 2013, Circulation.

[19]  F. Lezoualc’h,et al.  Identification of a Tetrahydroquinoline Analog as a Pharmacological Inhibitor of the cAMP-binding Protein Epac* , 2012, The Journal of Biological Chemistry.

[20]  Mark E. Anderson,et al.  CaMKII determines mitochondrial stress responses in heart , 2012, Nature.

[21]  L. Pott,et al.  Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. , 2012, Cardiovascular research.

[22]  P. Insel,et al.  Cyclic AMP is both a pro‐apoptotic and anti‐apoptotic second messenger , 2012, Acta physiologica.

[23]  M. Okada,et al.  Exendin-4 Suppresses Src Activation and Reactive Oxygen Species Production in Diabetic Goto-Kakizaki Rat Islets in an Epac-Dependent Manner , 2010, Diabetes.

[24]  T. Eschenhagen,et al.  β-Adrenergic stimulation and myocardial function in the failing heart , 2009, Heart Failure Reviews.

[25]  T. Pozzan,et al.  Measurements of mitochondrial calcium in vivo. , 2009, Biochimica et biophysica acta.

[26]  Mark E. Anderson,et al.  Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. , 2009, The Journal of clinical investigation.

[27]  R. Acín-Pérez,et al.  Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. , 2009, Cell metabolism.

[28]  F. Lezoualc’h,et al.  The cAMP binding protein Epac regulates cardiac myofilament function , 2009, Proceedings of the National Academy of Sciences.

[29]  J. Bos,et al.  8‐pCPT‐2′‐O‐Me‐cAMP‐AM: An Improved Epac‐Selective cAMP Analogue , 2008, Chembiochem : a European journal of chemical biology.

[30]  F. Gao,et al.  Insulin inhibits β-adrenergic action in ischemic/reperfused heart: a novel mechanism of insulin in cardioprotection , 2008, Apoptosis.

[31]  F. Lezoualc’h,et al.  The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes , 2007, The Journal of physiology.

[32]  S. Weinman,et al.  Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  P. Várnai,et al.  Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels , 2006, The Journal of cell biology.

[34]  F. Lezoualc’h,et al.  cAMP-Binding Protein Epac Induces Cardiomyocyte Hypertrophy , 2005, Circulation research.

[35]  M. Ovize,et al.  Low-pressure reperfusion alters mitochondrial permeability transition. , 2005, American journal of physiology. Heart and circulatory physiology.

[36]  M. Hori,et al.  , Seiji Protein Kinase C Protein Kinase A as Another Mediator of Ischemic Preconditioning Independent of , 2004 .

[37]  Xiaodong Cheng,et al.  Cell Cycle-dependent Subcellular Localization of Exchange Factor Directly Activated by cAMP* , 2002, The Journal of Biological Chemistry.

[38]  R. Knight,et al.  Different Signaling Pathways Induce Apoptosis in Endothelial Cells and Cardiac Myocytes During Ischemia/Reperfusion Injury , 2002, Circulation research.

[39]  Su-Min Lee,et al.  Control of Mitochondrial Redox Balance and Cellular Defense against Oxidative Damage by Mitochondrial NADP+-dependent Isocitrate Dehydrogenase* , 2001, The Journal of Biological Chemistry.

[40]  F. Boomsma,et al.  Time course and mechanism of myocardial catecholamine release during transient ischemia in vivo. , 2000, Circulation.

[41]  A M Graybiel,et al.  A family of cAMP-binding proteins that directly activate Rap1. , 1998, Science.

[42]  A. Wittinghofer,et al.  Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP , 1998, Nature.

[43]  W. Cascio,et al.  Selective loading of Rhod 2 into mitochondria shows mitochondrial Ca2+ transients during the contractile cycle in adult rabbit cardiac myocytes. , 1997, Biochemical and biophysical research communications.

[44]  L. Sordahl,et al.  Reevaluation of Oxidative Phosphorylation in Cardiac Mitochondria from Normal Animals and Animals in Heart Failure , 1968, Circulation research.

[45]  D. Hausenloy,et al.  The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. , 2015, Journal of molecular and cellular cardiology.

[46]  F. Lezoualc’h,et al.  Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy. , 2015, Cardiovascular research.