Automatic Algorithm Configuration Based on Local Search
暂无分享,去创建一个
[1] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[2] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[3] Alan J. Hu,et al. Boosting Verification by Automatic Tuning of Decision Procedures , 2007 .
[4] Holger H. Hoos,et al. A replica exchange Monte Carlo algorithm for protein folding in the HP model , 2007, BMC Bioinformatics.
[5] Toby Walsh,et al. Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.
[6] Manuel Laguna,et al. Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..
[7] Thomas Bartz-Beielstein,et al. Experimental research in evolutionary computation , 2007, GECCO '07.
[8] Mauro Birattari,et al. Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.
[9] Holger H. Hoos,et al. Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.
[10] Kevin Leyton-Brown,et al. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.
[11] Thomas Bartz-Beielstein,et al. Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.
[12] Steven Minton,et al. Automatically configuring constraint satisfaction programs: A case study , 1996, Constraints.
[13] Teofilo F. Gonzalez,et al. Reactive Search: Machine Learning for Memory-Based Heuristics , 2007 .
[14] Thomas Stützle,et al. Efficient Stochastic Local Search for MPE Solving , 2005, IJCAI.
[15] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[16] Mihai Oltean,et al. Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.
[17] Helena Ramalhinho Dias Lourenço,et al. Iterated Local Search , 2001, Handbook of Metaheuristics.
[18] George C. Runger,et al. Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.