Motion Models that Only Work Sometimes

It is too often that tracking algorithms lose track of interest points in image sequences. This persistent problem is difficult because the pixels around an interest point change in appearance or move in unpredictable ways. In this paper we explore how classifying videos into categories of camera motion improves the tracking of interest points, by selecting the right specialist motion model for each video. As a proof of concept, we enumerate a small set of simple categories of camera motion and implement their corresponding specialized motion models. We evaluate the strategy of predicting the most appropriate motion model for each test sequence. Within the framework of a standard Bayesian tracking formulation, we compare this strategy to two standard motion models. Our tests on challenging real-world sequences show a significant improvement in tracking robustness, achieved with different kinds of supervision at training time.

[1]  Deva Ramanan,et al.  Video Annotation and Tracking with Active Learning , 2011, NIPS.

[2]  Björn Stenger,et al.  Tracking Using Online Feature Selection and a Local Generative Model , 2007, BMVC.

[3]  Frédéric Jurie,et al.  Randomized Clustering Forests for Image Classification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[5]  Takahiro Okabe,et al.  Fast unsupervised ego-action learning for first-person sports videos , 2011, CVPR 2011.

[6]  David J. Fleet,et al.  Robust online appearance models for visual tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[7]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Nassir Navab,et al.  Online Learning of Linear Predictors for Real-Time Tracking , 2012, ECCV.

[9]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[10]  Andrew Blake,et al.  Sparse Bayesian learning for efficient visual tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Michael Isard,et al.  Learning to Track the Visual Motion of Contours , 1995, Artif. Intell..

[12]  Bodo Rosenhahn,et al.  Multi-scale Clustering of Frame-to-Frame Correspondences for Motion Segmentation , 2012, ECCV.

[13]  Takeo Kanade,et al.  Tracking in unstructured crowded scenes , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  Ales Leonardis,et al.  An adaptive coupled-layer visual model for robust visual tracking , 2011, 2011 International Conference on Computer Vision.

[16]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[17]  Ian D. Reid,et al.  Nonlinear shape manifolds as shape priors in level set segmentation and tracking , 2011, CVPR 2011.

[18]  Marc Pollefeys,et al.  Learning a Confidence Measure for Optical Flow , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Tsuhan Chen,et al.  Learning to Segment a Video to Clips Based on Scene and Camera Motion , 2012, ECCV.

[20]  Ales Leonardis,et al.  A local-motion-based probabilistic model for visual tracking , 2009, Pattern Recognit..

[21]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[22]  David Elliott,et al.  In the Wild , 2010 .

[23]  Anne Cuzol,et al.  A stochastic filter for fluid motion tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[24]  Kuk-Jin Yoon,et al.  Visual Tracking via Adaptive Tracker Selection with Multiple Features , 2012, ECCV.

[25]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[26]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[27]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[28]  Jiebo Luo,et al.  Recognizing realistic actions from videos “in the wild” , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[31]  João Pedro Barreto,et al.  Tracking Feature Points in Uncalibrated Images with Radial Distortion , 2012, ECCV.

[32]  Yanning Zhang,et al.  Robust Tracking with Weighted Online Structured Learning , 2012, ECCV.

[33]  Cordelia Schmid,et al.  Action recognition by dense trajectories , 2011, CVPR 2011.

[34]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[35]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[36]  Marc Pollefeys,et al.  Segmenting video into classes of algorithm-suitability , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Andrew W. Fitzgibbon,et al.  Combining local and global motion models for feature point tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Ivan Laptev,et al.  Data-driven crowd analysis in videos , 2011, ICCV.

[39]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Björn Stenger,et al.  Learning to track with multiple observers , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.