A novel MILP formulation for short-term scheduling of multistage multi-product batch plants

Abstract This study presents a continuous-time mixed-integer linear programming model for short-term scheduling of multistage multi-product batch plants. The model determines the optimal sequencing and the allocation of customer orders to non-identical processing units by minimizing the earliness and tardiness of order completion. This is a highly combinatorial problem, especially when sequence-dependent relations considered to be are such as the setup time between consecutive orders. A common approach to this scheduling problem relies on the application of tetra-index binary variables, i.e. (order, order, stage unit) to represent all the combinations of order sequences and assignments to units in the various stages. This generates a huge number of binary variables and, as a consequence, much time is required for solutions. This study proposes a novel formulation that replaces the tetra-index binary variables by one set of tri-index binary variables (order, order, stage) without losing the model's generality. By the elimination of the unit index, the new formulation requires considerably fewer binary variables, thus significantly shortening the solution time.