Mapping the pharmacological modulation of brain oxygen metabolism: The effects of caffeine on absolute CMRO2 measured using dual calibrated fMRI

[1]  J. Michenfelder,et al.  Cerebral Functional, Metabolic, and Hemodynamic Effects of Etomidate in Dogs , 1985, Anesthesiology.

[2]  P E Roland,et al.  Does mental activity change the oxidative metabolism of the brain? , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  O. Cameron,et al.  Caffeine and human cerebral blood flow: a positron emission tomography study. , 1990, Life sciences.

[4]  O. Petersen,et al.  Actions of Caffeine , 1991 .

[5]  J G Reves,et al.  The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass. , 1992, The Journal of thoracic and cardiovascular surgery.

[6]  W. White,et al.  Cerebral Physiologic Effects of Burst Suppression Doses of Propofol During Nonpulsatile Cardiopulmonary Bypass , 1995, Anesthesia and analgesia.

[7]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[8]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[9]  B B Fredholm,et al.  Distribution of adenosine receptors in the postmortem human brain: An extended autoradiographic study , 1997, Synapse.

[10]  T. L. Davis,et al.  Calibrated functional MRI: mapping the dynamics of oxidative metabolism. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  G. Crelier,et al.  Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model , 1999, Magnetic resonance in medicine.

[12]  B. Fredholm,et al.  Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. , 1999, Pharmacological reviews.

[13]  Astrid Nehlig,et al.  Dose–response study of caffeine effects on cerebral functional activity with a specific focus on dependence , 2000, Brain Research.

[14]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[15]  M. Raichle,et al.  Appraising the brain's energy budget , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Siepmann,et al.  Effects of Caffeine on Topographic Quantitative EEG , 2002, Neuropsychobiology.

[17]  Andrew P. Smith,et al.  Effects of caffeine on human behavior. , 2002, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[18]  Karl Zilles,et al.  In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography , 2003, NeuroImage.

[19]  Joseph A Maldjian,et al.  Relationship between caffeine-induced changes in resting cerebral perfusion and blood oxygenation level-dependent signal. , 2003, AJNR. American journal of neuroradiology.

[20]  Yuichi Kimura,et al.  Imaging of adenosine A1 receptors in the human brain by positron emission tomography with [11C]MPDX , 2003, Annals of nuclear medicine.

[21]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[22]  Xavier Golay,et al.  Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla , 2004, Magnetic resonance in medicine.

[23]  W. Dimpfel,et al.  The influence of caffeine on human EEG under resting condition and during mental loads , 1993, The clinical investigator.

[24]  F. Magkos,et al.  Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action , 2005, Critical reviews in food science and nutrition.

[25]  Yuichi Kimura,et al.  First visualization of adenosine A2A receptors in the human brain by positron emission tomography with [11C]TMSX , 2005, Synapse.

[26]  Daniel Gallichan,et al.  Bayesian inference of hemodynamic changes in functional arterial spin labeling data , 2006, Magnetic resonance in medicine.

[27]  Jeroen van der Grond,et al.  Sensitivity comparison of multiple vs. single inversion time pulsed arterial spin labeling fMRI , 2007, Journal of magnetic resonance imaging : JMRI.

[28]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[29]  G. Buzsáki,et al.  Inhibition and Brain Work , 2007, Neuron.

[30]  P. Laurienti,et al.  Methodological considerations for the quantification of self-reported caffeine use , 2009, Psychopharmacology.

[31]  Thomas T. Liu,et al.  Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: A calibrated BOLD fMRI study , 2008, NeuroImage.

[32]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[33]  Todd B. Parrish,et al.  Caffeine dose effect on activation-induced BOLD and CBF responses , 2009, NeuroImage.

[34]  Todd B. Parrish,et al.  Caffeine's effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism , 2009, NeuroImage.

[35]  J. J. Chen,et al.  BOLD‐specific cerebral blood volume and blood flow changes during neuronal activation in humans , 2009, NMR in biomedicine.

[36]  A. Fleisher,et al.  Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation , 2009, Human brain mapping.

[37]  Josef Pfeuffer,et al.  Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. , 2009, Magnetic resonance imaging.

[38]  R. Evershed,et al.  Association of the Anxiogenic and Alerting Effects of Caffeine with ADORA2A and ADORA1 Polymorphisms and Habitual Level of Caffeine Consumption , 2010, Neuropsychopharmacology.

[39]  Matthias Günther,et al.  Separation of macrovascular signal in multi‐inversion time arterial spin labelling MRI , 2010, Magnetic resonance in medicine.

[40]  H. Winn,et al.  Role of Adenosine A2 Receptors in Regulation of Cerebral Blood Flow during Induced Hypotension , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  Peter T Fox,et al.  Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex , 2010, Proceedings of the National Academy of Sciences.

[42]  Arne D. Ekstrom,et al.  How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation , 2010, Brain Research Reviews.

[43]  Francesco Vetri,et al.  Caffeine and the control of cerebral hemodynamics. , 2010, Journal of Alzheimer's disease : JAD.

[44]  Yuki Shinohara,et al.  Interindividual Variations of Cerebral Blood Flow, Oxygen Delivery, and Metabolism in Relation to Hemoglobin Concentration Measured by Positron Emission Tomography in Humans , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[45]  Andrei G. Vlassenko,et al.  Regional aerobic glycolysis in the human brain , 2010, Proceedings of the National Academy of Sciences.

[46]  Richard B. Buxton,et al.  Prospects for quantitative fMRI: Investigating the effects of caffeine on baseline oxygen metabolism and the response to a visual stimulus in humans , 2011, NeuroImage.

[47]  E Adalsteinsson,et al.  QUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular‐targeted velocity‐selective spin labeling , 2011, Magnetic resonance in medicine.

[48]  Wen-Chau Wu,et al.  Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging—A normative study of reproducibility in the human brain , 2011, NeuroImage.

[49]  Richard B. Buxton,et al.  A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: Modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal , 2011, NeuroImage.

[50]  Claudine Joëlle Gauthier,et al.  Magnetic resonance imaging of resting OEF and CMRO2 using a generalized calibration model for hypercapnia and hyperoxia , 2012, NeuroImage.

[51]  Elfar Adalsteinsson,et al.  Phase‐based regional oxygen metabolism (PROM) using MRI , 2012, Magnetic resonance in medicine.

[52]  Suzanne J. L. Einöther,et al.  Caffeine as an attention enhancer: reviewing existing assumptions , 2012, Psychopharmacology.

[53]  Ana Diukova,et al.  Storm in a coffee cup: caffeine modifies brain activation to social signals of threat. , 2012, Social cognitive and affective neuroscience.

[54]  P. Jezzard,et al.  Quantitative measurement of cerebral physiology using respiratory-calibrated MRI , 2012, NeuroImage.

[55]  Isabelle Lajoie,et al.  A simple breathing circuit allowing precise control of inspiratory gases for experimental respiratory manipulations , 2014, BMC Research Notes.

[56]  Rishma Vidyasagar,et al.  The Effect of Black Tea and Caffeine on Regional Cerebral Blood Flow Measured with Arterial Spin Labeling , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[57]  R. Hoge,et al.  A generalized procedure for calibrated MRI incorporating hyperoxia and hypercapnia , 2013, Human brain mapping.

[58]  Peiying Liu,et al.  Test–retest reproducibility of a rapid method to measure brain oxygen metabolism , 2013, Magnetic resonance in medicine.

[59]  Richard G. Wise,et al.  Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia , 2013, NeuroImage.

[60]  G. Bruce Pike,et al.  3681 The Effect of Dissolved Oxygen on Relaxation Rates of Blood Plasma , 2013 .

[61]  Chan-A Park,et al.  The effects of caffeine ingestion on cortical areas: functional imaging study. , 2014, Magnetic resonance imaging.

[62]  Lionel Rigoux,et al.  VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data , 2014, PLoS Comput. Biol..

[63]  M. Andersson,et al.  Food intake, tumor growth, and weight loss in EP2 receptor subtype knockout mice bearing PGE2-producing tumors , 2015, Physiological reports.

[64]  J. Dunn,et al.  Studying cerebral hemodynamics and metabolism using simultaneous near-infrared spectroscopy and transcranial Doppler ultrasound: a hyperventilation and caffeine study , 2015, Physiological reports.

[65]  Peiying Liu,et al.  Does acute caffeine ingestion alter brain metabolism in young adults? , 2015, NeuroImage.

[66]  Richard G. Wise,et al.  A forward modelling approach for the estimation of oxygen extraction fraction by calibrated fMRI , 2016, NeuroImage.

[67]  Richard G. Wise,et al.  Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration , 2016, NeuroImage.

[68]  Peter Herman,et al.  Quantitative β mapping for calibrated fMRI , 2016, NeuroImage.