The distribution of Fe in the Australian sector of the Southern Ocean

[1]  K. Timmermans,et al.  Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean , 1998 .

[2]  H. Matsueda,et al.  Close coupling between seasonal biological production and dynamics of dissolved inorganic carbon in the Indian Ocean sector and the western Pacific Ocean sector of the Antarctic Ocean , 1998 .

[3]  Shigenobu Takeda,et al.  Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters , 1998, Nature.

[4]  W. Sunda,et al.  Interrelated influence of iron, light and cell size on marine phytoplankton growth , 1997, Nature.

[5]  A. Tsuda,et al.  Microzooplankton grazing in the surface water of the Southern Ocean during an austral summer , 1997, Polar Biology.

[6]  K. Johnson,et al.  What controls dissolved iron concentrations in the world ocean? Authors' closing comments , 1997 .

[7]  P. Sedwick,et al.  Iron and manganese in surface waters of the Australian subantarctic region , 1997 .

[8]  Koji Suzuki,et al.  Estimation of phytoplankton succession in a fertilized mesocosm during summer using high-performance liquid chromatographic analysis of pigments , 1997 .

[9]  Kenneth S. Johnson,et al.  Marine Chemistry Discussion Paper What controls dissolved iron concentrations in the world ocean , 1997 .

[10]  F. Chai,et al.  Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis , 1997 .

[11]  K. Coale,et al.  Iron distributions in the equatorial Pacific: Implications for new production , 1997 .

[12]  C. Jeandel,et al.  Fe and H2O2 distributions in the upper water column in the Indian sector of the Southern Ocean , 1997 .

[13]  S. Wright,et al.  Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the \'CHEMTAX\' matrix factorisation program , 1996 .

[14]  G. Luther,et al.  Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean , 1996 .

[15]  J. Nishioka,et al.  Controls on iron(III) hydroxide solubility in seawater: The influence of pH and natural organic chelators , 1996 .

[16]  K. Johnson,et al.  Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean , 1996, Nature.

[17]  W. Sunda,et al.  Iron uptake and growth limitation in oceanic and coastal phytoplankton , 1995 .

[18]  G. Luther,et al.  Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach , 1995 .

[19]  C. V. D. Berg Evidence for organic complexation of iron in seawater , 1995 .

[20]  Wensheng Yao,et al.  The speciation of Fe(II) and Fe(III) in natural waters , 1995 .

[21]  D. King,et al.  Photochemical redox cycling of iron in coastal seawater , 1995 .

[22]  K. Bruland,et al.  Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method , 1995 .

[23]  V. Smetácek,et al.  Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean , 1995, Nature.

[24]  Martha Gledhill,et al.  Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry , 1994 .

[25]  J. Cowen,et al.  Reactive trace metals in the stratified central North Pacific , 1994 .

[26]  G. Luther,et al.  Size‐fractionated iron concentrations in the water column of the western North Atlantic Ocean , 1994 .

[27]  K. Johnson,et al.  Iron photochemistry in seawater from the equatorial Pacific , 1994 .

[28]  H. Obata,et al.  Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection , 1993 .

[29]  P. Tréguer,et al.  Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean* , 1992 .

[30]  Yoshihiro Suzuki,et al.  Dissolution rate and solubility of colloidal hydrous ferric oxide in seawater , 1992 .

[31]  R. Duce,et al.  Atmospheric transport of iron and its deposition in the ocean , 1991 .

[32]  E. Helbling,et al.  Effect of iron on productivity and size distribution of Antarctic phytoplankton , 1991 .

[33]  B. Mitchell,et al.  Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean , 1991 .

[34]  R. F. Nolting,et al.  Cadmium, copper and iron in the Scotia Sea, Weddell Sea and Weddell/Scotia Confluence (Antarctica) , 1991 .

[35]  S. Westerlund,et al.  Iron in the water column of the Weddell sea , 1991 .

[36]  R. Guillard,et al.  A chemical method for estimating the availability of iron to phytoplankton in seawater , 1991 .

[37]  L. Mayer,et al.  Variations in the chemical lability of iron in estuarine, coastal and shelf waters and its implications for phytoplankton , 1991 .

[38]  P. Tréguer,et al.  On iron limitation of the Southern Ocean : experimental observations in the Weddell and Scotia Seas. , 1990 .

[39]  A. Gordon,et al.  Southern ocean winter mixed layer , 1990 .

[40]  S. Fitzwater,et al.  Iron in Antarctic waters , 1990, Nature.

[41]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in Antarctic waters , 1990 .

[42]  P. Burkill,et al.  Manganese and iron in Indian Ocean waters , 1989 .

[43]  W. Broenkow,et al.  Vertex: phytoplankton/iron studies in the Gulf of Alaska , 1989 .

[44]  J. Raven The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources , 1988 .

[45]  R. Gordon,et al.  Northeast Pacific iron distributions in relation to phytoplankton productivity , 1988 .

[46]  A. Martell,et al.  Speciation of metals in the oceans. I. Inorganic complexes in seawater, and influence of added chelating agents , 1987 .

[47]  T. Whitworth,et al.  Water masses and currents of the Southern Ocean at the Greenwich Meridian , 1987 .

[48]  T. Packard,et al.  Productivity in upwelling areas deduced from hydrographic and chemical fields1 , 1986 .

[49]  J. Klinck,et al.  The physics of the Antarctic Circumpolar Current , 1986 .

[50]  Worth D. Nowlin,et al.  The stratification and water masses at Drake Passage , 1984 .

[51]  M. Bender,et al.  Tracers in the Sea , 1984 .

[52]  David M. Nelson,et al.  Nutrient depletion indicates high primary productivity in the Weddell Sea , 1984, Nature.

[53]  M. Takahashi,et al.  Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope , 1983 .

[54]  J. H. Martin,et al.  Iron in north-east Pacific waters , 1982, Nature.

[55]  Andrew G. Dickson,et al.  The equilibrium speciation of dissolved components in freshwater and sea water at 25°C and 1 atm pressure , 1981 .

[56]  S. Jacobs,et al.  Water column anomalies in dissolved silica over opaline Pelagic sediments and the origin of the deep silica maximum , 1979 .

[57]  R. Byrne,et al.  Solubility of hydrous ferric oxide and iron speciation in seawater , 1976 .

[58]  S. Gartner,et al.  Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments , 1973 .

[59]  S. Taylor,et al.  Abundance of chemical elements in the continental crust: A new table: Geochimica e t Cosmochimica Ac , 1964 .

[60]  R. Scharek,et al.  Responses of Southern Ocean phytoplankton to the addition of trace metals , 1997 .

[61]  L. Goeyens,et al.  Iron enrichment experiments in the Southern Ocean: physiological responses of plankton communities , 1997 .

[62]  V. Smetácek,et al.  Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean , 1997 .

[63]  F. Dehairs,et al.  The distribution of Fe in the antarctic circumpolar current , 1997 .

[64]  L. Goeyens,et al.  Nutrient anomalies in Fragilariopsis kerguelensis blooms, iron deficiency and the nitrate/phosphate ratio (A. C. Redfield) of the Antarctic Ocean , 1997 .

[65]  V. Smetácek,et al.  Ecology and biogeochemistry of the Antarctic Circumpolar Current during austral spring a summary of Southern Ocean JGOFS cruise ANT X/6 of R. V. Polarstern , 1997 .

[66]  J. Berg,et al.  Principles Of Bioinorganic Chemistry , 1994 .

[67]  S. J. Tanner,et al.  Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic bloom experiment , 1993 .

[68]  H. Minas,et al.  Net community production in high nutrient-low chlorophyll waters of the tropical and antarctic oceans - grazing vs iron hypothesis , 1992 .

[69]  John H. Martin Iron as a Limiting Factor in Oceanic Productivity , 1992 .

[70]  Paul G. Falkowski,et al.  Primary Productivity and Biogeochemical Cycles in the Sea , 1992 .

[71]  B. Tilbrook,et al.  Seasonal coupling of organic matter production and particle flux in the western Bransfield Strait, Antartica , 1991 .

[72]  M. Sohn,et al.  Aquatic surface chemistry: Edited by Werner Stumm. Wiley, New York. 1987. $69.95 (ISBN 0471822951) , 1988 .

[73]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[74]  K. Bruland,et al.  The contrasting biogeochemistry of iron and manganese in the Pacific Ocean , 1987 .

[75]  R. Moore,et al.  The potential for biological mobilization of trace elements from aeolian dust in the ocean and its importance in the case of iron , 1984 .

[76]  A. Castelfranco,et al.  Effects of Iron and Oxygen on Chlorophyll Biosynthesis : I. IN VIVO OBSERVATIONS ON IRON AND OXYGEN-DEFICIENT PLANTS. , 1982, Plant physiology.

[77]  B. M. Chereskin,et al.  Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS. , 1982, Plant physiology.