Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter

Abstract This paper investigates the state estimation of a high-fidelity spatially resolved thermal-electrochemical lithium-ion battery model commonly referred to as the pseudo two-dimensional model. The partial-differential algebraic equations (PDAEs) constituting the model are spatially discretised using Chebyshev orthogonal collocation enabling fast and accurate simulations up to high C-rates. This implementation of the pseudo-2D model is then used in combination with an extended Kalman filter algorithm for differential-algebraic equations to estimate the states of the model. The state estimation algorithm is able to rapidly recover the model states from current, voltage and temperature measurements. Results show that the error on the state estimate falls below 1% in less than 200 s despite a 30% error on battery initial state-of-charge and additive measurement noise with 10 mV and 0.5 K standard deviations.

[1]  C. M. Doyle Design and simulation of lithium rechargeable batteries , 2010 .

[2]  Hosam K. Fathy,et al.  Battery-Health Conscious Power Management in Plug-In Hybrid Electric Vehicles via Electrochemical Modeling and Stochastic Control , 2013, IEEE Transactions on Control Systems Technology.

[3]  A. Stefanopoulou,et al.  Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter , 2010 .

[4]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[5]  C. P. Please,et al.  Some comments on the Butler-Volmer equation for modeling Lithium-ion batteries , 2015, 1503.05912.

[6]  A. M. Skundin,et al.  The effect of temperature on lithium intercalation into carbon materials , 1998 .

[7]  Marc Doyle,et al.  Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs , 2003 .

[8]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[9]  David A. Howey,et al.  Model identification and parameter estimation for LiFePO 4 batteries , 2013 .

[10]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[11]  James L. Lee,et al.  Discrete-time realization of transcendental impedance models, with application to modeling spherical solid diffusion , 2012 .

[12]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[13]  Richard D. Braatz,et al.  State of Charge Estimation in Li-ion Batteries Using an Isothermal Pseudo Two-Dimensional Model , 2013 .

[14]  Long Cai,et al.  Lithium ion cell modeling using orthogonal collocation on finite elements , 2012 .

[15]  Nigel P. Brandon,et al.  Coupled thermal–electrochemical modelling of uneven heat generation in lithium-ion battery packs , 2013 .

[16]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[17]  Venkatasailanathan Ramadesigan,et al.  Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks , 2011 .

[18]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[19]  T. L. Kulova,et al.  Temperature effect on the lithium diffusion rate in graphite , 2006 .

[20]  Christopher D. Rahn,et al.  Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries , 2010, IEEE Transactions on Control Systems Technology.

[21]  Andrew Chemistruck,et al.  One-dimensional physics-based reduced-order model of lithium-ion dynamics , 2012 .

[22]  Ralph E. White,et al.  Online Estimation of the State of Charge of a Lithium Ion Cell , 2006 .

[23]  Takeshi Abe,et al.  Temperature dependence of the electrochemical behavior of LiCoO2 in quaternary ammonium-based ionic liquid electrolyte , 2005 .

[24]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[25]  Michel André,et al.  The ARTEMIS European driving cycles for measuring car pollutant emissions. , 2004, The Science of the total environment.

[26]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[27]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[28]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification , 2004 .

[29]  Richard D. Braatz,et al.  Optimal control and state estimation of lithium-ion batteries using reformulated models , 2013, 2013 American Control Conference.

[30]  Gregory L. Plett,et al.  Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter , 2015 .

[31]  Richard D. Braatz,et al.  Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models , 2014 .

[32]  Chaoyang Wang,et al.  Model Order Reduction of 1D Diffusion Systems Via Residue Grouping , 2008 .

[33]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[34]  V. Becerra,et al.  Applying the extended Kalman filter to systems described by nonlinear differential-algebraic equations , 2001 .

[35]  Xiaosong Hu,et al.  A comparative study of equivalent circuit models for Li-ion batteries , 2012 .

[36]  S. M. Mahdi Alavi,et al.  Rechargeable Battery Energy Storage System Design , 2015 .

[37]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[38]  Stephen R. Duncan,et al.  Advanced battery management systems using fast electrochemical modelling , 2013 .

[39]  John McPhee,et al.  Simplification and order reduction of lithium-ion battery model based on porous-electrode theory , 2012 .

[40]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[41]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[42]  M. Krstić,et al.  Adaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model , 2014 .

[43]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[44]  Hosam K. Fathy,et al.  Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell , 2012 .

[45]  James L. Lee,et al.  Extended operating range for reduced-order model of lithium-ion cells , 2014 .

[46]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[47]  Ross Drummond,et al.  Low-Order Mathematical Modelling of Electric Double Layer Supercapacitors Using Spectral Methods , 2014, ArXiv.

[48]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[49]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[50]  Lawrence F. Shampine,et al.  Solving Index-1 DAEs in MATLAB and Simulink , 1999, SIAM Rev..

[51]  Christopher D. Rahn,et al.  Model-based electrochemical estimation of lithium-ion batteries , 2008, 2008 IEEE International Conference on Control Applications.

[52]  Koichi Nakamura On the diffusion of Li+ defects in LiCoO2 and LiNiO2 , 2000 .