Some Typical Properties of the Spatial Preferred Attachment Model

We investigate a stochastic model for complex networks, based on a spatial embedding of the nodes, called the Spatial Preferred Attachment (SPA) model. In the SPA model, nodes have spheres of influence of varying size, and new nodes may only link to a node if they fall within its influence region. The spatial embedding of the nodes models the background knowledge or identity of the node, which influences its link environment. In this paper, we focus on the (directed) diameter, small separators, and the (weak) giant component of the model.

[1]  Desmond J. Higham,et al.  Fitting a geometric graph to a protein-protein interaction network , 2008, Bioinform..

[2]  S. Bornholdt,et al.  Handbook of Graphs and Networks , 2012 .

[3]  Alan M. Frieze,et al.  A Geometric Preferential Attachment Model of Networks II , 2007, Internet Math..

[4]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[5]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[6]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[7]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[8]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[9]  Lada A. Adamic,et al.  A social network caught in the Web , 2003, First Monday.

[10]  Guy E. Blelloch,et al.  Compact representations of separable graphs , 2003, SODA '03.

[11]  Anthony Bonato,et al.  A course on the Web graph , 2008 .

[12]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[13]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[14]  Seungyeop Han,et al.  Analysis of topological characteristics of huge online social networking services , 2007, WWW '07.

[15]  Rory Wilson,et al.  Estimating node similarity from co-citation in a spatial graph model , 2010, SAC '10.

[16]  Alan M. Frieze,et al.  Some Typical Properties of the Spatial Preferred Attachment Model , 2014, Internet Math..

[17]  N. Konno,et al.  Geographical threshold graphs with small-world and scale-free properties. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Ernesto Estrada,et al.  Spectral scaling and good expansion properties in complex networks , 2006, Europhysics Letters (EPL).

[19]  Alan M. Frieze,et al.  A Geometric Preferential Attachment Model of Networks , 2004, WAW.

[20]  Remco van der Hofstad,et al.  A Phase Transition for the Diameter of the Configuration Model , 2007, Internet Math..

[21]  Anthony Bonato,et al.  A Spatial Web Graph Model with Local Influence Regions , 2007, Internet Math..

[22]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[23]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[24]  Rory Wilson,et al.  Geometric Graph Properties of the Spatial Preferred Attachment model , 2011, ArXiv.

[25]  Jeannette C. M. Janssen,et al.  Spatial Models for Virtual Networks , 2010, CiE.

[26]  Amin Saberi,et al.  On certain connectivity properties of the internet topology , 2006, J. Comput. Syst. Sci..

[27]  Anthony Bonato,et al.  Geometric Protean Graphs , 2011, Internet Math..

[28]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[29]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[30]  Aric A. Hagberg,et al.  The Structure of Geographical Threshold Graphs , 2008, Internet Math..

[31]  Alan M. Frieze,et al.  A Geometric Preferential Attachment Model of Networks II , 2007, Internet Math..

[32]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.