Metrology of Time and Frequency

This chapter provides a concise overview of the current status of time and frequency metrology. The definition of the time unit and of time scales is given, and the standards and procedures to realize them are described. The measures by which their properties are characterized are explained. The comparison of remote standards is discussed to the extent that it is a prerequisite for the realization of a world reference time scale by the Bureau International des Poids et Mesures (BIPM). Only a brief account is given on the various means of disseminating time and the wide applications thereof. The reader is invited to use the literature in the Further Reading section as well as the numerous references to get a deeper insight into the field. Keywords: time measurement; atomic frequency standard; Ramsey cavity; maser; primary frequency standard; Galileo system time

[1]  T J Quinn,et al.  Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001) , 2003 .

[2]  R. Wynands,et al.  Atomic fountain clocks , 2005 .

[3]  Józef Kalisz,et al.  Review of methods for time interval measurements with picosecond resolution , 2004 .

[4]  Pierre Héroux,et al.  Precise Point Positioning Using IGS Orbit and Clock Products , 2001, GPS Solutions.

[5]  J. Vanier Atomic clocks based on coherent population trapping: a review , 2005 .

[6]  J. Levine,et al.  Carrier-phase time transfer , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  Otto Koudelka,et al.  Time transfer with nanosecond accuracy for the realization of International Atomic Time , 2008 .

[8]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[9]  R. A. Hulse,et al.  THE DISCOVERY OF THE BINARY PULSAR , 1994 .

[10]  E. F. Arias,et al.  Atomic time-keeping from 1955 to the present , 2005 .

[11]  Leo W. Hollberg,et al.  The measurement of optical frequencies , 2005 .

[12]  D. Kirchner,et al.  Two-way time transfer via communication satellites , 1991, Proc. IEEE.

[13]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[14]  Tony Jones,et al.  Splitting the Second , 2000 .

[15]  E. F. Arias,et al.  Use of IGS products in TAI applications , 2009 .

[16]  Andreas Bauch,et al.  The PTB primary clocks CS1 and CS2 , 2005 .

[17]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[18]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[19]  A. Makdissi,et al.  Evaluation of the accuracy of the optically pumped caesium beam primary frequency standard of BNM-LPTF , 2001 .

[20]  Judah Levine,et al.  Introduction to time and frequency metrology , 1999 .

[21]  Judah Levine,et al.  Improvements to the NIST network time protocol servers , 2008 .

[22]  P. Forman,et al.  Atomichron®: The atomic clock from concept to commercial product , 1985, Proceedings of the IEEE.

[23]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[24]  Leonard S. Cutler,et al.  Fifty years of commercial caesium clocks , 2005 .

[25]  S. Karshenboim Some possibilities for laboratory searches for variations of fundamental constants , 2000 .

[26]  Gerd Gendt,et al.  The International GPS Service: Celebrating the 10th anniversary and looking to the next decade , 2005 .

[27]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[28]  M. E. Packard,et al.  The Optically Pumped Rubidium Vapor Frequency Standard , 1962 .

[29]  H. Fliegel,et al.  The Leap Second - Its History and Possible Future , 2001 .

[30]  J.J. McFerran,et al.  Considerations on the measurement of the stability of oscillators with frequency counters , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[32]  Hidetoshi Katori,et al.  Spectroscopy of Strontium Atoms in the Lamb-Dicke Confinement , 2002 .

[33]  W. Riley,et al.  Handbook of frequency stability analysis , 2008 .

[34]  N Ashby,et al.  Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance. , 2007, Physical review letters.

[35]  David W. Allan,et al.  INTERNATIONAL REPORTS: Technical Directives for Standardization of GPS Time Receiver Software: to be implemented for improving the accuracy of GPS common-view time transfer , 1994 .

[36]  Jean-Philippe Uzan,et al.  The fundamental constants and their variation: observational and theoretical status , 2003 .

[37]  Kenichi Fujii,et al.  Considerations on future redefinitions of the kilogram, the mole and of other units , 2007 .

[38]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[39]  Peter J. Mohr,et al.  Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005) , 2006 .

[40]  J. V. L. PARRY,et al.  An Atomic Standard of Frequency and Time Interval: A Cæsium Resonator , 1955, Nature.

[41]  C. Audoin,et al.  Characterization of Frequency Stability: Uncertainty due to the Finite Number of Measurements , 1973 .

[42]  I. Stairs Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.

[43]  Wm. Markowitz,et al.  Frequency of Cesium in Terms of Ephemeris Time , 1958 .

[44]  Joseph Taylor,et al.  Binary pulsars and relativistic gravity , 1994 .

[45]  Gerard Petit,et al.  GPS All in View time transfer for TAI computation , 2008 .

[46]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[47]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[48]  C. Mandache,et al.  The passive optically pumped Rb frequency standard: the laser approach , 2007 .

[49]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[50]  P. Rosenbusch,et al.  Cold atom clocks and applications , 2005, physics/0502117.

[51]  S. Lea Limits to time variation of fundamental constants from comparisons of atomic frequency standards , 2007 .

[52]  T. Parker Environmental factors and hydrogen maser frequency stability , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[53]  Jim R. Ray,et al.  Geodetic techniques for time and frequency comparisons using GPS phase and code measurements , 2005 .

[54]  Pascale Defraigne,et al.  Time transfer to TAI using geodetic receivers , 2003 .

[55]  Scott A. Diddams,et al.  Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level , 2004, Science.

[56]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[57]  Jim R. Ray,et al.  IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation , 2003 .