A novel online visualization system for observing polymer extrusion foaming

[1]  E. Solórzano,et al.  Polymer foam evolution characterized by time-resolved neutron radiography , 2015 .

[2]  Chul B. Park,et al.  In-situ visualization of polypropylene crystallization during extrusion , 2014 .

[3]  E. Solórzano,et al.  Time-resolved X-ray imaging of nanofiller-polyurethane reactive foam systems , 2013 .

[4]  J. Saja,et al.  X-ray radioscopy in-situ studies in thermoplastic polymer foams , 2013 .

[5]  Chul B. Park,et al.  Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide—Effects of extensional stresses and crystals , 2013 .

[6]  E. Solórzano,et al.  Application of a microfocus X-ray imaging apparatus to the study of cellular polymers , 2013 .

[7]  Chul B. Park,et al.  The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide , 2012 .

[8]  Xiangping Li,et al.  Comparative investigation of three types of ethanol sensor based on NiO-SnO2 composite nanofibers , 2012 .

[9]  Chul B. Park,et al.  A visualization system for observing plastic foaming processes under shear stress , 2012 .

[10]  Kadriye Ertekin,et al.  Copper ion sensing with fluorescent electrospun nanofibers. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  Chul B. Park,et al.  A batch foaming visualization system with extensional stress-inducing ability , 2011 .

[12]  Chul B. Park,et al.  Effect of die geometry on foaming behaviors of high‐melt‐strength polypropylene with CO2 , 2008 .

[13]  Chul B. Park,et al.  Effects of the die geometry on the expansion of polystyrene foams blown with carbon dioxide , 2008 .

[14]  Chul B. Park,et al.  A Microcellular Foaming Simulation System with a High Pressure-Drop Rate , 2006 .

[15]  Leon P.B.M. Janssen,et al.  Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications , 2006 .

[16]  R. Gendron,et al.  Ultrasonic characterization performed during chemical foaming of cross-linked polyolefins , 2004 .

[17]  Chul B. Park,et al.  Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams , 2004 .

[18]  R. Gendron,et al.  A Study of Strain-Induced Nucleation in Thermoplastic Foam Extrusion , 2004 .

[19]  M. Guo,et al.  Study of shear nucleation theory in continuous microcellular foam extrusion , 2003 .

[20]  Takashi Nakayama,et al.  Visual Observations of Batch and Continuous Foaming Processes , 2003 .

[21]  Xiang Wang,et al.  Effects of Shear Stress and Pressure Drop Rate on Microcellular Foaming Process , 2001 .

[22]  Chul B. Park,et al.  Effects of supercritical CO2 on the viscosity and morphology of polymer blends , 2000 .

[23]  Chul B. Park,et al.  Measurements and modeling of PS/supercritical CO2 solution viscosities , 1999 .

[24]  Chul B. Park,et al.  Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers , 1995 .

[25]  Z. Tadmor,et al.  Polymer melt devolatilization mechanisms , 1990 .

[26]  C. Han,et al.  A study of bubble nucleation in a mixture of molten polymer and volatile liquid in a shear flow field , 1988 .

[27]  Jonathan S. Colton,et al.  The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion , 1987 .

[28]  Jonathan S. Colton,et al.  Nucleation of microcellular foam: Theory and practice , 1987 .

[29]  Jonathan S. Colton,et al.  The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations , 1987 .

[30]  C. Han,et al.  Rheology in polymer processing , 1976 .