An implicit algorithm for validated enclosures of the solutions to variational equations for ODEs

An algorithm for validated computation of monodromy matrices for ODEs is provided.Smaller truncation error allows larger time steps making the computation faster.The existence of a chaotic and hyperbolic set for the Rossler system is proved via computer-assisted proofs techniques. We propose a new algorithm for computing validated bounds for the solutions to the first order variational equations associated to ODEs. These validated solutions are the kernel of numerics computer-assisted proofs in dynamical systems literature. The method uses a high-order Taylor method as a predictor step and an implicit method based on the Hermite-Obreshkov interpolation as a corrector step. The proposed algorithm is an improvement of the C 1 -Lohner algorithm proposed by Zgliczynski and it provides sharper bounds.As an application of the algorithm, we give a computer-assisted proof of the existence of an attractor set in the Rossler system, and we show that the attractor contains an invariant and uniformly hyperbolic subset on which the dynamics is chaotic, that is, conjugated to subshift of finite type with positive topological entropy.

[1]  Zbigniew Galias,et al.  Counting Low-Period Cycles for Flows , 2006, Int. J. Bifurc. Chaos.

[2]  George F. Corliss,et al.  Validating an A Priori Enclosure Using High-Order Taylor Series , 2007 .

[3]  Zbigniew Galias,et al.  Rigorous study of short periodic orbits for the Lorenz system , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[4]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[5]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[6]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[7]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1999, Reliab. Comput..

[8]  Jacek Cyranka,et al.  Efficient and Generic Algorithm for Rigorous Integration Forward in Time of dPDEs: Part I , 2014, J. Sci. Comput..

[9]  Daniel Wilczak,et al.  Period Doubling in the Rössler System—A Computer Assisted Proof , 2007, Found. Comput. Math..

[10]  V. Strassen Gaussian elimination is not optimal , 1969 .

[11]  Johannes Willkomm,et al.  Introduction to Automatic Differentiation , 2009 .

[12]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[13]  Marian Mrozek,et al.  Set arithmetic and the enclosing problem in dynamics , 2000 .

[14]  A. Neumaier Interval methods for systems of equations , 1990 .

[15]  C. Simó,et al.  Computer assisted proofs for nonsymmetric planar choreographies and for stability of the Eight , 2007 .

[16]  Martin Berz,et al.  Rigorous integration of flows and ODEs using taylor models , 2009, SNC '09.

[17]  Piotr Zgliczynski,et al.  C1 Lohner Algorithm , 2002, Found. Comput. Math..

[18]  Daniel Wilczak,et al.  Computer Assisted Proof of the Existence of Homoclinic Tangency for the Hénon Map and for the Forced Damped Pendulum , 2009, SIAM J. Appl. Dyn. Syst..

[19]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[20]  Daniel Wilczak,et al.  Uniformly Hyperbolic Attractor of the Smale-Williams Type for a Poincaré Map in the Kuznetsov System , 2010, SIAM J. Appl. Dyn. Syst..

[21]  Andreas Griewank,et al.  Introduction to Automatic Differentiation , 2003 .

[22]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[23]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[24]  H. Kokubu,et al.  Rigorous verification of cocoon bifurcations in the Michelson system , 2007 .

[25]  Andreas Rauh,et al.  A Novel Interval Arithmetic Approach for Solving Differential-Algebraic Equations with ValEncIA-IVP , 2009, Int. J. Appl. Math. Comput. Sci..

[26]  A. Wasieczko,et al.  Geometric Proof of Strong Stable/Unstable Manifolds, with Application to the Restricted Three Body Problem , 2014, 1401.3015.

[27]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[28]  Rudolf Krawczyk,et al.  Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.

[29]  Piotr Zgliczynski,et al.  A Homoclinic Orbit in a Planar Singular ODE - A Computer Assisted Proof , 2013, SIAM J. Appl. Dyn. Syst..

[30]  P. Zgliczynski,et al.  The existence of simple choreographies for the N-body problem—a computer-assisted proof , 2003, math/0304404.

[31]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[32]  P. Pilarczyk Topological-numerical approach to the existence of periodic trajectories in ODE's , 2003 .

[33]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[34]  O. Rössler An equation for continuous chaos , 1976 .

[35]  D. Wilczak,et al.  Cr-Lohner algorithm , 2011 .

[36]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[37]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[38]  D. Wilczak,et al.  $C^r$-Lohner algorithm , 2007, 0704.0720.

[39]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[40]  Roberto Barrio,et al.  Coexistence and Dynamical Connections between Hyperchaos and Chaos in the 4D Rössler System: A Computer-Assisted Proof , 2016, SIAM J. Appl. Dyn. Syst..

[41]  Roberto Barrio,et al.  When chaos meets hyperchaos: 4D Rössler model , 2015 .

[42]  Martin Berz,et al.  COSY INFINITY Version 9 , 2006 .

[43]  Martin Berz,et al.  New Methods for High-Dimensional Verified Quadrature , 1999, Reliab. Comput..

[44]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[45]  Maciej J. Capinski,et al.  Computer Assisted Existence Proofs of Lyapunov Orbits at L2 and Transversal Intersections of Invariant Manifolds in the Jupiter-Sun PCR3BP , 2012, SIAM J. Appl. Dyn. Syst..

[46]  Roberto Barrio,et al.  Systematic Computer Assisted Proofs of periodic orbits of Hamiltonian systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[47]  Roberto Barrio,et al.  Computer-assisted proof of skeletons of periodic orbits , 2012, Comput. Phys. Commun..