The accuracy of hydrogen sorption measurements on potential storage materials

The most common gas phase hydrogen sorption measurement techniques used for the characterisation of potential hydrogen storage materials are the volumetric, or manometric, and gravimetric methods and temperature-programmed desorption (TPD), also known as thermal desorption spectroscopy (TDS). In this article previous work relating to the accuracy of these measurements, including some comparative studies, is reviewed, together with some relevant standards and related guidelines. The potential sources of error in hydrogen sorption measurements performed volumetrically and gravimetrically are also discussed, together with some of those related to TPD. The issues covered include sample degassing procedures, hydrogen compressibility, gas purity and differences in helium and hydrogen leak rates.

[1]  S. Suda,et al.  Consistent determination of the intrinsic kinetic properties between hydrogen and hydriding alloys , 1995 .

[2]  F. Cuevas,et al.  Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides , 2000 .

[3]  Louis Schlapbach,et al.  Hydrogen in Intermetallic Compounds , 1983 .

[4]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[5]  M. E. Brown,et al.  Introduction to Thermal Analysis: Techniques and applications , 1988 .

[6]  E. Akiba,et al.  The effect of CO2, CH4, H2O and N2 on MgNi alloys as hydrogen transporting media , 1986 .

[7]  M. Donohue,et al.  Analysis of adsorption isotherms : Lattice Theory predictions, classification of isotherms for gas-solid equilibria, and similarities in gas and liquid adsorption behavior , 1998 .

[8]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[9]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[10]  H. Wipf Hydrogen in Metals III , 1997 .

[11]  R. Chahine,et al.  Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples , 2005 .

[12]  J. Joubert,et al.  Intermetallic compounds as negative electrodes of Ni/MH batteries , 2001 .

[13]  P. D. Goodell,et al.  Stability of rechargeable hydriding alloys during extended cycling , 1984 .

[14]  D. Guay,et al.  Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds , 2002 .

[15]  Michael Hirscher,et al.  Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials , 2007 .

[16]  R. Staudt,et al.  Gas Adsorption Equilibria: Experimental Methods and Adsorption Isotherms , 2004 .

[17]  B. Haynes,et al.  Evaluation of thermal desorption spectra for heterogeneous surfaces: application to carbon surface oxides , 1993 .

[18]  A. Fletcher,et al.  Hydrogen adsorption on functionalized nanoporous activated carbons. , 2005, The journal of physical chemistry. B.

[19]  A. Miotello,et al.  Sievert-type apparatus for the study of hydrogen storage in solids , 2004 .

[20]  Eric W. Lemmon,et al.  Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications1 , 2006 .

[21]  E. MacA. Gray,et al.  Stability of the hydrogen absorption and desorption plateaux in LaNi5–H: Part 5: H capacity , 1999 .

[22]  G. Alefeld,et al.  Hydrogen in Metals II , 1978 .

[23]  T. Yildirim,et al.  Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. , 2005, Physical review letters.

[24]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[25]  E. Robens,et al.  Standardization of Methods for Characterizing the Surface Geometry of Solids , 2003 .

[26]  Shivaji Sircar,et al.  Measurement of gibbsian surface excess , 2001 .

[27]  M. Hirscher,et al.  Are carbon nanostructures an efficient hydrogen storage medium , 2003 .

[28]  K. Kaneko,et al.  A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-functional theory study , 2001 .

[29]  A. Danon,et al.  Study of carbon molecular sieve fibres by atmospheric TPD-MS of H2O, CO and CO2 , 1998 .

[30]  K. Sing Adsorption methods for the characterization of porous materials , 1998 .

[31]  A. Züttel,et al.  Hydrogen adsorption in carbonaceous materials–: How to determine the storage capacity accurately , 2002 .

[32]  F. Block,et al.  Investigation of selective absorption of hydrogen by LaNi5 and FeTi , 1983 .

[33]  X. Bai,et al.  Hydrogen storage in aligned carbon nanotubes , 2001 .

[34]  P. Svoronos,et al.  Handbook of basic tables for chemical analysis , 1989 .

[35]  Reiner Kirchheim,et al.  Hydrogen as a probe for the average thickness of a grain boundary , 1987 .

[36]  Ulrich Eberle,et al.  Hydrogen storage in metal–hydrogen systems and their derivatives , 2006 .

[37]  R. Chahine,et al.  Adsorbent Helium Density Measurement and Its Effect on Adsorption Isotherms at High Pressure , 1997 .

[38]  William G. Houf,et al.  Characterization of leaks from compressed hydrogen dispensing systems and related components , 2006 .

[39]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[40]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[41]  D. Lozano‐Castelló,et al.  Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons , 2004 .

[42]  O. Vilches,et al.  Adsorption of H2 and D2 on Carbon Nanotube Bundles , 2002 .

[43]  E. Gray,et al.  An equation of state for deuterium gas to 1000 bar , 2004 .

[44]  G. Sandrock,et al.  Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage , 2002 .

[45]  J. M. Lafferty,et al.  Foundations of Vacuum Science and Technology , 1999 .

[46]  Diego Cazorla-Amorós,et al.  Hydrogen Storage in Activated Carbons and Activated Carbon Fibers , 2002 .

[47]  A. Pedersen,et al.  The storage of industrially pure hydrogen in magnesium , 1993 .

[48]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[49]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[50]  J. R. Johnson,et al.  The correlation between composition and electrochemical properties of metal hydride electrodes , 1999 .

[51]  Y. Belmabkhout,et al.  High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods , 2004 .

[53]  I. R. Harris,et al.  The Measurement of Concentration Dependent Diffusion Coefficients in the Solid-solution Alloy Pd-Y* , 1993 .

[54]  E. Robens,et al.  Progress in the standardisation of particle and surface characterisation , 2002 .

[55]  D. Westlake Hydrides of intermetallic compounds: A review of stabilities, stoichiometries and preferred hydrogen sites , 1983 .

[56]  J. A. Schwarz,et al.  ASSESSMENT OF THE EFFECT OF IMPURITY GASES ON THE STORAGE CAPACITY OF HYDROGEN ON ACTIVATED CARBON USING THE CONCEPT OF EFFECTIVE ADSORBED PHASE MOLAR VOLUME , 1991 .

[57]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[58]  Ch Carel Massen,et al.  Sources of Error in Sorption and Density Measurements , 1999 .

[59]  V. Srinivasan,et al.  Interaction of carbon monoxide with the hydrogen storage alloy, CaNi5; kinetic and surface studies , 1989 .

[60]  Robert C. Bowman,et al.  Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si , 2004 .

[61]  Miroslav Haluska,et al.  Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids , 2003 .

[62]  A. Neimark,et al.  Calibration of Pore Volume in Adsorption Experiments and Theoretical Models , 1997 .

[63]  R. Snyder,et al.  Defect and Microstructure Analysis by Diffraction , 2000 .

[64]  J. Reilly,et al.  Reaction of hydrogen with alloys of magnesium and copper , 1967 .

[65]  W. A. Oates,et al.  Some thermodynamic aspects of metal hydrogen systems , 2005 .

[66]  K. Thomas,et al.  Adsorption of gases on a carbon molecular sieve used for air separation: Linear adsorptives as probes for kinetic selectivity , 1998 .

[67]  Jai-Young Lee,et al.  The effect of CO impurity on the hydrogenation properties of LaNi5, LaNi4.7Al0.3 and MmNi4.5Al0.5 during hydriding-dehydriding cycling , 1989 .

[68]  Yaping Zhou,et al.  Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage , 2001 .

[69]  J. Eastman,et al.  Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation☆ , 1990 .

[70]  T. Blach,et al.  Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts , 2007 .

[71]  A. Pundt,et al.  Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters , 2003 .

[72]  R Barkman,et al.  ASTM. 1999. Standard practice for conducting an interlaboratory study to determine the precision of a test method. ASTM E691-92. In: Annual Book of ASTM Standards. Philadelphia, PA:American Society for Testing and Materials. , 2006 .

[73]  Y. Matsumura,et al.  Hydrogen absorption of nanocrystalline palladium , 2002 .

[74]  Andreas Züttel,et al.  Hydrogen in Nanostructured, Carbon-Related, and Metallic Materials , 2002 .

[75]  J. Joubert,et al.  Metallic Hydrides II: Materials for Electrochemical Storage , 2002 .

[76]  Paul A. Anderson,et al.  Hydrogen adsorption in zeolites a, x, y and rho , 2003 .

[77]  P. Redhead Recommended practices for measuring and reporting outgassing data , 2002 .

[78]  J. Blackledge CHAPTER 5 – Chemistry of Metal Hydrides as Related to Their Applications in Nuclear Technology , 1968 .

[79]  J. Bloch,et al.  Kinetics and mechanisms of metal hydrides formation—a review , 1997 .

[80]  R. Kirchheim,et al.  Segregation and diffusion of hydrogen in grain boundaries of palladium , 1987 .

[81]  K. Thomas,et al.  Adsorption Kinetics and Size Exclusion Properties of Probe Molecules for the Selective Porosity in a Carbon Molecular Sieve Used for Air Separation , 2001 .

[82]  M. Sanjuán,et al.  Porosity, Surface Area, Surface Energy, and Hydrogen Adsorption in Nanostructured Carbons , 2004 .

[83]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[84]  Qi Wang,et al.  Properties, and Applications , 2005 .

[85]  F. Castro,et al.  A novel thermal desorption spectroscopy apparatus , 2000 .

[86]  A. D. Mcquillan,et al.  Thermal transpiration correction of hydrogen equilibrium pressure measurements in metal/hydrogen solution , 1975 .

[87]  J. Patrick,et al.  An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials , 2006 .

[88]  M. Donohue,et al.  Adsorption isotherms for microporous adsorbents , 1995 .

[89]  K. Hanada,et al.  Hydrogen uptake of carbon nanofiber under moderate temperature and low pressure , 2003 .

[90]  G. Alefeld,et al.  Hydrogen in Metals I , 1978 .

[91]  M. Tkacz,et al.  Useful equations of state of hydrogen and deuterium , 2002 .

[92]  A. Cooper,et al.  Hydrogen adsorption in microporous hypercrosslinked polymers. , 2006, Chemical communications.

[93]  D. Ross,et al.  Experimental Determination of Absorption-Desorption Isotherms by Computer-Controlled Gravimetric Analysis* , 1989 .

[94]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[95]  J. Garche,et al.  Hydrogen adsorption on carbon materials , 1999 .

[96]  C. Buckley,et al.  Stability of the hydrogen absorption and desorption plateaux in LaNi5H Part 2: Effects of absorbing and desorbing large aliquots of hydrogen , 1994 .

[97]  Alfred Driessen,et al.  Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000K , 1986 .

[98]  C. Buckley,et al.  Stability of the hydrogen absorption and desorption plateaux in LaNi5—H.: Part 4: thermal history effects , 1995 .

[99]  Louis Schlapbach,et al.  Surface properties and activation , 1992 .

[100]  I. R. Harris,et al.  Hydrogen storage in ion-exchanged zeolites , 2005 .

[101]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[102]  Omar M Yaghi,et al.  Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. , 2005, Journal of the American Chemical Society.

[103]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[104]  S. Kreitzman,et al.  Thermal desorption spectra of hydrogen from the bulk: ZrV2Hx , 1981 .

[105]  P. Goodell Cycling hydriding response of LaNi5 in hydrogen containing oxygen as a minor impurity , 1983 .

[106]  D. Neumann Neutron scattering and hydrogenous materials , 2006 .

[107]  C. Buckley,et al.  Stability of the hydrogen absorption and desorption plateaux in LaNi5H Part 1: Hysteresis dynamics and location of the equilibrium isotherm , 1994 .

[108]  Jacques Huot,et al.  Mechanically alloyed metal hydride systems , 2001 .

[109]  A. Gu,et al.  How to accurately determine the uptake of hydrogen in carbonaceous materials , 2004 .

[110]  Andreas Züttel,et al.  Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques , 2004 .

[111]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[112]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[113]  P. Rudman,et al.  Hydriding and dehydriding rates of the LaNi5-H system , 1983 .

[114]  B. Clemens,et al.  Novel Sieverts' type volumetric measurements of hydrogen storage properties for very small sample quantities , 2008 .

[115]  F. Darkrim,et al.  Review of hydrogen storage by adsorption in carbon nanotubes , 2002 .

[116]  R. Schmitt,et al.  A high-temperature, high-pressure microbalance for the determination of the hydrogen sorption characteristics of metal hydrides☆ , 1978 .