Chemical Control of the Dimensionality of the Octahedral Network of Solar Absorbers from the CuI–AgI–BiI3 Phase Space by Synthesis of 3D CuAgBiI5
暂无分享,去创建一个
V. Dhanak | L. Herz | J. Gibbon | H. Snaith | M. Zanella | M. J. Pitcher | J. Claridge | M. Rosseinsky | Leonardo Rocco Vittorio Buizza | H. Sansom | M. Dyer | T. Manning
[1] S. Shaji,et al. Development of lead-free Cu2BiI5 rudorffite thin films for visible light photodetector application , 2021 .
[2] L. Herz,et al. Polarons and Charge Localization in Metal‐Halide Semiconductors for Photovoltaic and Light‐Emitting Devices , 2021, Advanced materials.
[3] M. Johnston,et al. Charge-Carrier Mobility and Localization in Semiconducting Cu2AgBiI6 for Photovoltaic Applications , 2021, ACS energy letters.
[4] M. Johnston,et al. Ultrafast Excited-State Localization in Cs2AgBiBr6 Double Perovskite , 2021, The journal of physical chemistry letters.
[5] R. Friend,et al. Highly Absorbing Lead-Free Semiconductor Cu2AgBiI6 for Photovoltaic Applications from the Quaternary CuI–AgI–BiI3 Phase Space , 2021, Journal of the American Chemical Society.
[6] Jay B. Patel,et al. Halide Segregation in Mixed-Halide Perovskites: Influence of A-Site Cations , 2021, ACS energy letters.
[7] Z. Shen,et al. Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite , 2021, Science Advances.
[8] L. Herz,et al. Understanding the Performance-Limiting Factors of Cs2AgBiBr6 Double-Perovskite Solar Cells , 2020, ACS Energy Letters.
[9] M. Grätzel,et al. Thermochemical Stability of Hybrid Halide Perovskites , 2019, ACS Energy Letters.
[10] Y. Qi,et al. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis , 2019, Journal of Materials Chemistry A.
[11] H. Snaith,et al. Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6 , 2019, Journal of Materials Chemistry C.
[12] A. Barker,et al. Defect Activity in Lead Halide Perovskites , 2019, Advanced materials.
[13] L. Herz,et al. Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite , 2018, ACS Energy Letters.
[14] U. Bach,et al. Silver Bismuth Sulfoiodide Solar Cells: Tuning Optoelectronic Properties by Sulfide Modification for Enhanced Photovoltaic Performance , 2018, Advanced Energy Materials.
[15] Jay B. Patel,et al. Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite , 2018, ACS Energy Letters.
[16] L. Herz. How Lattice Dynamics Moderate the Electronic Properties of Metal-Halide Perovskites. , 2018, The journal of physical chemistry letters.
[17] Xiaogang Yang,et al. An in-situ room temperature route to CuBiI4 based bulk-heterojunction perovskite-like solar cells , 2018, Science China Materials.
[18] T. Savenije,et al. Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony–Bismuth Cs2AgBi1–xSbxBr6 Halide Double Perovskites , 2018, ACS omega.
[19] T. Ma,et al. Solution-Processed Air-Stable Copper Bismuth Iodide for Photovoltaics. , 2018, ChemSusChem.
[20] V. Bulović,et al. The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains , 2018, Advanced materials.
[21] T. Savenije,et al. Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.
[22] L. Herz,et al. Structural and Optical Properties of Cs 2 AgBiBr 6 Double Perovskite , 2018 .
[23] T. Savenije,et al. Charge Carrier Dynamics in Cs 2 AgBiBr 6 Double Perovskite , 2018 .
[24] H. Tomiyasu,et al. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites. , 2017, ChemSusChem.
[25] L. Herz. Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .
[26] T. J. Whittles,et al. AgBiI4 as a Lead-Free Solar Absorber with Potential Application in Photovoltaics , 2017 .
[27] K. Jacobsen,et al. Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic-Inorganic Halide Perovskites. , 2016, The journal of physical chemistry letters.
[28] A. Walsh,et al. Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? , 2016, ACS energy letters.
[29] Ajay Ram Srimath Kandada,et al. Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors , 2016 .
[30] L. Quan,et al. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics. , 2016, Angewandte Chemie.
[31] W. Goddard,et al. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects. , 2016, Nano letters.
[32] D. J. Clark,et al. Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .
[33] D. B. Tagiyev,et al. Phase Equilibria in the Tl—TlI—Se System and Thermodynamic Properties of the Ternary Phases. , 2015 .
[34] Omar K Farha,et al. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.
[35] J. Galisteo‐López,et al. Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry letters.
[36] M. B. Babanly,et al. Experimental investigation of the Ag-Bi-I ternary system and thermodynamic properties of the ternary phases , 2013 .
[37] R. Cava,et al. Successive orbital ordering transitions in NaVO2. , 2008, Physical Review Letters.
[38] D. C. Johnston. Stretched exponential relaxation arising from a continuous sum of exponential decays , 2006 .
[39] A. Pfitzner,et al. Solvothermale Synthese und Bestimmung der Kristallstrukturen von AgBiI4 und Ag3BiI6 , 2005 .
[40] Thorsten Oldaga,et al. Solvothermale Synthese und Bestimmung der Kristallstrukturen von AgBiI 4 und Ag 3 BiI 6 Solvothermal Synthesis and Crystal Structure Determination of AgBiI 4 and Ag 3 BiI 6 , 2005 .
[41] Mariette Hellenbrandt,et al. The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .
[42] D. Carré,et al. Structure du tétraiodure de cuivre(I) et de bismuth(III), CuBiI4 , 1991 .
[43] J. Goodenough,et al. Structural characterization of delithiated LiVO2 , 1984 .
[44] R. Céolin,et al. Etude du systeme AgIBiI3 , 1979 .
[45] J. Trotter,et al. The crystal structure of SbI3 and BiI3 , 1966 .
[46] W. Rüdorff,et al. Notizen: Die Strukturen von LiVO2, NaVO2, LiCrO2 und NaCrO2 , 1954 .
[47] L. Pauling,et al. The crystal structure of cadmium chloride , 1930 .
[48] L. Pauling,et al. XXXVII. The Crystal Structure of Cadmium Chloride , 1930 .
[49] J. Bijvoet,et al. The scattering power of lithium and oxygen, determined from the diffraction-intensities of powdered lithiumoxide. , 1926 .
[50] G. Aminoff. VII. Über die Kristallstruktur von AgJ , 1922 .
[51] R. Wyckoff,et al. The Crystal Structures of the Cuprous Halides , 1922 .
[52] W. Bragg. The Structure of Magnetite and the Spinels , 1915, Nature.