Chemical Control of the Dimensionality of the Octahedral Network of Solar Absorbers from the CuI–AgI–BiI3 Phase Space by Synthesis of 3D CuAgBiI5

A newly reported compound, CuAgBiI5, is synthesized as powder, crystals, and thin films. The structure consists of a 3D octahedral Ag+/Bi3+ network as in spinel, but occupancy of the tetrahedral interstitials by Cu+ differs from those in spinel. The 3D octahedral network of CuAgBiI5 allows us to identify a relationship between octahedral site occupancy (composition) and octahedral motif (structure) across the whole CuI–AgI–BiI3 phase field, giving the ability to chemically control structural dimensionality. To investigate composition–structure–property relationships, we compare the basic optoelectronic properties of CuAgBiI5 with those of Cu2AgBiI6 (which has a 2D octahedral network) and reveal a surprisingly low sensitivity to the dimensionality of the octahedral network. The absorption onset of CuAgBiI5 (2.02 eV) barely changes compared with that of Cu2AgBiI6 (2.06 eV) indicating no obvious signs of an increase in charge confinement. Such behavior contrasts with that for lead halide perovskites which show clear confinement effects upon lowering dimensionality of the octahedral network from 3D to 2D. Changes in photoluminescence spectra and lifetimes between the two compounds mostly derive from the difference in extrinsic defect densities rather than intrinsic effects. While both materials show good stability, bulk CuAgBiI5 powder samples are found to be more sensitive to degradation under solar irradiation compared to Cu2AgBiI6.

[1]  S. Shaji,et al.  Development of lead-free Cu2BiI5 rudorffite thin films for visible light photodetector application , 2021 .

[2]  L. Herz,et al.  Polarons and Charge Localization in Metal‐Halide Semiconductors for Photovoltaic and Light‐Emitting Devices , 2021, Advanced materials.

[3]  M. Johnston,et al.  Charge-Carrier Mobility and Localization in Semiconducting Cu2AgBiI6 for Photovoltaic Applications , 2021, ACS energy letters.

[4]  M. Johnston,et al.  Ultrafast Excited-State Localization in Cs2AgBiBr6 Double Perovskite , 2021, The journal of physical chemistry letters.

[5]  R. Friend,et al.  Highly Absorbing Lead-Free Semiconductor Cu2AgBiI6 for Photovoltaic Applications from the Quaternary CuI–AgI–BiI3 Phase Space , 2021, Journal of the American Chemical Society.

[6]  Jay B. Patel,et al.  Halide Segregation in Mixed-Halide Perovskites: Influence of A-Site Cations , 2021, ACS energy letters.

[7]  Z. Shen,et al.  Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite , 2021, Science Advances.

[8]  L. Herz,et al.  Understanding the Performance-Limiting Factors of Cs2AgBiBr6 Double-Perovskite Solar Cells , 2020, ACS Energy Letters.

[9]  M. Grätzel,et al.  Thermochemical Stability of Hybrid Halide Perovskites , 2019, ACS Energy Letters.

[10]  Y. Qi,et al.  Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis , 2019, Journal of Materials Chemistry A.

[11]  H. Snaith,et al.  Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6 , 2019, Journal of Materials Chemistry C.

[12]  A. Barker,et al.  Defect Activity in Lead Halide Perovskites , 2019, Advanced materials.

[13]  L. Herz,et al.  Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite , 2018, ACS Energy Letters.

[14]  U. Bach,et al.  Silver Bismuth Sulfoiodide Solar Cells: Tuning Optoelectronic Properties by Sulfide Modification for Enhanced Photovoltaic Performance , 2018, Advanced Energy Materials.

[15]  Jay B. Patel,et al.  Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite , 2018, ACS Energy Letters.

[16]  L. Herz How Lattice Dynamics Moderate the Electronic Properties of Metal-Halide Perovskites. , 2018, The journal of physical chemistry letters.

[17]  Xiaogang Yang,et al.  An in-situ room temperature route to CuBiI4 based bulk-heterojunction perovskite-like solar cells , 2018, Science China Materials.

[18]  T. Savenije,et al.  Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony–Bismuth Cs2AgBi1–xSbxBr6 Halide Double Perovskites , 2018, ACS omega.

[19]  T. Ma,et al.  Solution-Processed Air-Stable Copper Bismuth Iodide for Photovoltaics. , 2018, ChemSusChem.

[20]  V. Bulović,et al.  The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains , 2018, Advanced materials.

[21]  T. Savenije,et al.  Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[22]  L. Herz,et al.  Structural and Optical Properties of Cs 2 AgBiBr 6 Double Perovskite , 2018 .

[23]  T. Savenije,et al.  Charge Carrier Dynamics in Cs 2 AgBiBr 6 Double Perovskite , 2018 .

[24]  H. Tomiyasu,et al.  Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites. , 2017, ChemSusChem.

[25]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[26]  T. J. Whittles,et al.  AgBiI4 as a Lead-Free Solar Absorber with Potential Application in Photovoltaics , 2017 .

[27]  K. Jacobsen,et al.  Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic-Inorganic Halide Perovskites. , 2016, The journal of physical chemistry letters.

[28]  A. Walsh,et al.  Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? , 2016, ACS energy letters.

[29]  Ajay Ram Srimath Kandada,et al.  Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors , 2016 .

[30]  L. Quan,et al.  Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics. , 2016, Angewandte Chemie.

[31]  W. Goddard,et al.  Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects. , 2016, Nano letters.

[32]  D. J. Clark,et al.  Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .

[33]  D. B. Tagiyev,et al.  Phase Equilibria in the Tl—TlI—Se System and Thermodynamic Properties of the Ternary Phases. , 2015 .

[34]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[35]  J. Galisteo‐López,et al.  Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry letters.

[36]  M. B. Babanly,et al.  Experimental investigation of the Ag-Bi-I ternary system and thermodynamic properties of the ternary phases , 2013 .

[37]  R. Cava,et al.  Successive orbital ordering transitions in NaVO2. , 2008, Physical Review Letters.

[38]  D. C. Johnston Stretched exponential relaxation arising from a continuous sum of exponential decays , 2006 .

[39]  A. Pfitzner,et al.  Solvothermale Synthese und Bestimmung der Kristallstrukturen von AgBiI4 und Ag3BiI6 , 2005 .

[40]  Thorsten Oldaga,et al.  Solvothermale Synthese und Bestimmung der Kristallstrukturen von AgBiI 4 und Ag 3 BiI 6 Solvothermal Synthesis and Crystal Structure Determination of AgBiI 4 and Ag 3 BiI 6 , 2005 .

[41]  Mariette Hellenbrandt,et al.  The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .

[42]  D. Carré,et al.  Structure du tétraiodure de cuivre(I) et de bismuth(III), CuBiI4 , 1991 .

[43]  J. Goodenough,et al.  Structural characterization of delithiated LiVO2 , 1984 .

[44]  R. Céolin,et al.  Etude du systeme AgIBiI3 , 1979 .

[45]  J. Trotter,et al.  The crystal structure of SbI3 and BiI3 , 1966 .

[46]  W. Rüdorff,et al.  Notizen: Die Strukturen von LiVO2, NaVO2, LiCrO2 und NaCrO2 , 1954 .

[47]  L. Pauling,et al.  The crystal structure of cadmium chloride , 1930 .

[48]  L. Pauling,et al.  XXXVII. The Crystal Structure of Cadmium Chloride , 1930 .

[49]  J. Bijvoet,et al.  The scattering power of lithium and oxygen, determined from the diffraction-intensities of powdered lithiumoxide. , 1926 .

[50]  G. Aminoff VII. Über die Kristallstruktur von AgJ , 1922 .

[51]  R. Wyckoff,et al.  The Crystal Structures of the Cuprous Halides , 1922 .

[52]  W. Bragg The Structure of Magnetite and the Spinels , 1915, Nature.