Efficient Hierarchical Approximation of High-Dimensional Option Pricing Problems

A major challenge in computational finance is the pricing of options that depend on a large number of risk factors. Prominent examples are basket or index options where dozens or even hundreds of stocks constitute the underlying asset and determine the dimensionality of the corresponding degenerate parabolic equation. The objective of this article is to show how an efficient discretization can be achieved by hierarchical approximation as well as asymptotic expansions of the underlying continuous problem. The relation to a number of state-of-the-art methods is highlighted.

[1]  Hans-Joachim Bungartz,et al.  Pointwise Convergence Of The Combination Technique For Laplace's Equation , 1994 .

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  P. Wilmott The Mathematics of Financial Derivatives , 1995 .

[4]  Aihui Zhou,et al.  Error analysis of the combination technique , 1999, Numerische Mathematik.

[5]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[6]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[7]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[8]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[9]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[10]  Hans-Joachim Bungartz,et al.  Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .

[11]  Christoph Reisinger,et al.  Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben , 2004 .

[12]  Gabriel Wittum,et al.  On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .

[13]  Rolf Rannacher,et al.  Finite Element Methods for the Incompressible Navier-Stokes Equations , 2000 .

[14]  Cornelis W. Oosterlee,et al.  TVD, WENO and blended BDF discretizations for Asian options , 2004 .

[15]  A. Montagnoli,et al.  Efficient Option Pricing with Transaction Costs , 2003 .

[16]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[17]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  You-Lan Zhu,et al.  Multi-Factor Financial Derivatives on Finite Domains , 2003 .

[19]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[20]  A. Etheridge A course in financial calculus , 2002 .

[21]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[22]  R. Maccormack Numerical Methods for the Navier-Stokes Equations , 1985 .

[23]  Christoph Reisinger,et al.  Analysis of linear difference schemes in the sparse grid combination technique , 2007, 0710.0491.

[24]  Rolf Rannacher,et al.  Numerical methods for the Navier-Stokes equations , 1994 .

[25]  Christoph Pflaum,et al.  Convergence of the Combination Technique for Second-Order Elliptic Differential Equations , 1997 .