IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations
暂无分享,去创建一个
[1] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[2] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[3] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .
[4] Sol Hellerman,et al. Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .
[5] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[6] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.
[7] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[8] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[9] Shao-Liang Zhang,et al. GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..
[10] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[11] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[12] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[13] M. B. Van Gijzen,et al. A finite element discretization for stream-function problems on multiply connected domains , 1997 .
[14] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[15] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[16] Tony F. Chan,et al. ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..
[17] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[18] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[19] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .