c-Fos immunoreactivity in the brain after esophageal acid stimulation.

[1]  D. Kantner,et al.  Afferent and efferent innervation of the rat esophagus , 1984, Anatomy and Embryology.

[2]  George Paxinos,et al.  Chemoarchitectonic Atlas of the Rat Brainstem , 1999 .

[3]  I. McGregor,et al.  Rewarding brain stimulation induces only sparse Fos-like immunoreactivity in dopaminergic neurons , 1998, Neuroscience.

[4]  N. Matsumoto,et al.  Further evidence for the involvement of the spinoparabrachial pathway in nociceptive processes: A c‐Fos study in the rat , 1997, The Journal of comparative neurology.

[5]  P. Gass,et al.  Basal expression of the inducible transcription factors c‐Jun, JunB, JunD, c‐Fos, FosB, and Krox‐24 in the adult rat brain , 1995, The Journal of comparative neurology.

[6]  M. Dragunow,et al.  Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. , 1995, Pharmacological reviews.

[7]  T. Curran,et al.  Fos: an immediate-early transcription factor in neurons. , 1995, Journal of neurobiology.

[8]  J. Besson,et al.  The parabrachial area: electrophysiological evidence for an involvement in visceral nociceptive processes. , 1994, Journal of neurophysiology.

[9]  W. Blessing,et al.  Fos-containing neurons in medulla and pons after unilateral stimulation of the afferent abdominal vagus in conscious rabbits , 1994, Neuroscience.

[10]  F. Calaresu,et al.  Expression of c-fos protein in rat brain after electrical stimulation of the aortic depressor nerve , 1992, Brain Research.

[11]  K. Harris,et al.  Expression of c-fos protein in rat brain elicited by electrical stimulation of the pontine parabrachial nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  S. Wesselingh,et al.  Transneuronal labeling of neurons in rabbit brain after injection of herpes simplex virus type 1 into the aortic depressor nerve , 1991, Brain Research.

[13]  T. Curran,et al.  Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. , 1991, Annual review of neuroscience.

[14]  H. Kuypers,et al.  Viruses as transneuronal tracers , 1990, Trends in Neurosciences.

[15]  P. Sawchenko,et al.  Central neural control of esophageal motility: A review , 1990, Dysphagia.

[16]  D. G. Ward Neurons in the parabrachial nuclei respond to hemorrhage , 1989, Brain Research.

[17]  D. Hopkins,et al.  Viscerotopic representation of the upper alimentary tract in the rat: Sensory ganglia and nuclei of the solitary and spinal trigeminal tracts , 1989, The Journal of comparative neurology.

[18]  T. Curran,et al.  The Oncogene Handbook , 1988 .

[19]  T. Curran,et al.  Expression of c-fos protein in brain: metabolic mapping at the cellular level. , 1988, Science.

[20]  D. Hopkins,et al.  Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: The nucleus ambiguus , 1987, The Journal of comparative neurology.

[21]  S. Hunt,et al.  Induction of c-fos-like protein in spinal cord neurons following sensory stimulation , 1987, Nature.

[22]  T. Curran,et al.  Mapping patterns of c-fos expression in the central nervous system after seizure. , 1987, Science.

[23]  Cechetto Df,et al.  Central representation of visceral function. , 1987 .

[24]  I. Verma,et al.  The fos oncogene. , 1987, Advances in cancer research.

[25]  D. Bieger Muscarinic activation of rhombencephalic neurones controlling oesophageal peristalsis in the rat , 1984, Neuropharmacology.

[26]  I. Verma,et al.  Viral and cellular fos proteins: A comparative analysis , 1984, Cell.

[27]  T. Curran,et al.  Induction of c-fos gene and protein by growth factors precedes activation of c-myc , 1984, Nature.

[28]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[29]  K. Lillemoe,et al.  Role of the components of the gastroduodenal contents in experimental acid esophagitis. , 1982, Surgery.

[30]  J. Harmon,et al.  Effects of acid and bile salts on the rabbit esophageal mucosa , 1981, Digestive diseases and sciences.

[31]  M. Mesulam,et al.  Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches , 1980, The Journal of comparative neurology.

[32]  E. Kivilaakso,et al.  Effect of bile salts and related compounds on isolated esophageal mucosa. , 1980, Surgery.

[33]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[34]  W. Rees,et al.  Bile reflux in gastro-oesophageal disease. , 1977, Clinics in gastroenterology.

[35]  S. Safaie-Shirazi Effect of pepsin on ionic permeability of canine esophageal mucosa. , 1977, The Journal of surgical research.

[36]  L. Denbesten,et al.  Effect of bile salts on the ionic permeability of the esophageal mucosa and their role in the production of esophagitis. , 1975, Gastroenterology.

[37]  M. Reivich,et al.  Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxyglucose. , 1975, Science.

[38]  H. Goldberg,et al.  Role of acid and pepsin in acute experimental esophagitis. , 1969, Gastroenterology.