Resonant states for a three-body problem under an external field

Here we consider one of the basic models for many-body problems under an external field: the molecule ion H+2 under the effect of an external Stark-type potential. If we consider the vibrational energy levels of the first two electronic states of the molecule ion H+2 then, in the semiclassical limit and by means of a suitable modified Born-Oppenheimer method, we can prove that they switch to sharp resonances localized in the same interval of energy of the vibrational levels when an external Stark-type field, with the same direction of the nuclear axis, occurs. In Memory of Pierre Duclos

[1]  C. Cancelier,et al.  Quantum resonances without analyticity , 2005 .

[2]  J. Hiskes DISSOCIATION OF MOLECULAR IONS BY ELECTRIC AND MAGNETIC FIELDS , 1961 .

[3]  Pont,et al.  Ionization, dissociation, and level shifts of H2 + in a strong dc or low-frequency ac field. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  André Martinez Resonance Free Domains for Non Globally Analytic Potentials , 2002 .

[5]  André Martinez,et al.  Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules , 2008, 0809.3663.

[6]  J. Sjöstrand,et al.  Fourier integral operators with complex-valued phase functions , 1975 .

[7]  Bernard Helffer,et al.  Résonances en limite semi-classique , 1986 .

[8]  J. Combes,et al.  On the location of resonances for Schrödinger operators in the semiclassical limit I. Resonances free domains , 1987 .

[9]  Barry Simon,et al.  Monotonicity of the electronic contribution to the Born-Oppenheimer energy , 1978 .

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[12]  B. Helffer,et al.  Puits de potentiel généralisés et asymptotique semi-classique , 1984 .

[13]  André Martinez,et al.  Resonances of diatomic molecules in the born-oppenheimer approximation , 1994 .

[14]  E. Caliceti,et al.  Double wells: Nevanlinna analyticity, distributional Borel sum and asymptotics , 1996 .

[15]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .

[16]  Harris,et al.  1/R expansion for H2 +: Calculation of exponentially small terms and asymptotics. , 1986, Physical review. A, General physics.

[17]  A. Carrington,et al.  Spectroscopy of the hydrogen molecular ion , 1989 .

[18]  W. Hunziker Distortion analyticity and molecular resonance curves , 1986 .

[19]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[20]  D. Robert Autour de l'approximation semi-classique , 1987 .

[21]  I. Herbst,et al.  Spectral analysis ofN-body Stark Hamiltonians , 1995 .

[22]  Ruedi Seiler,et al.  On the Born-Oppenheimer expansion for polyatomic molecules , 1992 .

[23]  S. Fujiié,et al.  Width of shape resonances for non globally analytic potentials , 2008, 0811.0734.

[24]  R. Giachetti,et al.  Perturbation theory for metastable states of the Dirac equation with quadratic vector interaction , 2009, 0905.2073.

[25]  B. Lascar,et al.  Singularités analytiques microlocales . Equation de Schrödinger et propagation des singularités pour des opéerateurs pseudodifférentiels à ccaractéristiques réelles de multiplicité variable , 1982 .