A Case Study of the Great Plains Low-Level Jet Using Wind Profiler Network Data and a High-Resolution Mesoscale Model

Abstract A detailed case study of one complete episode of a typical summertime Great Plains low-level jet (LLJ) using data collected by the NOAA wind profiler demonstration network is presented. The high temporal and spatial resolution of the data from the profiler network permits a much more detailed picture of the Great Plains LLJ than is possible from previous studies of this phenomenon. A three-dimensional mesoscale numerical model is also used to simulate the episode and to provide information on the physical mechanisms responsible for the initiation, evolution, maintenance, and decay of the LLJ. The position and width of the jet core, as well as the diurnal variation of wind speed and direction inside the jet core are well predicted by the model. The analysis and modeling suggest that the diurnal oscillation of horizontal pressure gradient over sloping terrain is secondary to the inertial oscillation mechanism resulting from the release of frictional constraint in the evening and throughout the nigh...