The geometry of Grauert tubes and complexification of symmetric spaces

We study the canonical complexifications of non-compact Riemannian symmetric spaces G/K by the Grauert tube construction. We determine the maximal such complexification, a domain already constructed in another context by Akhiezer and Gindikin (Math. Ann., 1990), and show that this domain is Stein. We show there is an alternative for a G-invariant complexification: it is either "rigid" (its automorphism group is G), or it is a Hermmitian symmetric space. We also determine when invariant complexifications, especially the maximal one, are Hermitian symmetric. This is expressed simply in terms of the ranks of the symmetric spaces involved.

[1]  L. Barchini Stein extensions of real symmetric spaces and the geometry of the flag manifold , 2003 .

[2]  A. Huckleberry On certain domains in cycle spaces of flag manifolds , 2002 .

[3]  J. Wolf,et al.  Schubert Varieties and Cycle Spaces , 2002, math/0204033.

[4]  D. Ma,et al.  On rigidity of Grauert tubes over Riemannian manifolds of constant curvature , 2002 .

[5]  S. Gindikin,et al.  Invariant Stein domains in Stein symmetric spaces anda nonlinear complex convexity theorem , 2001, math/0110173.

[6]  R. Hind,et al.  Symplectic geometry and the uniqueness of Grauert tubes , 2000, math/0010299.

[7]  J. Wolf,et al.  Linear cycle spaces in flag domains , 2000 .

[8]  D. Ma,et al.  On rigidity of Grauert tubes over locally symmetric spaces , 2000 .

[9]  Su-Jen kan On the rigidity of non-positively curved Grauert tubes , 1998 .

[10]  Su-Jen kan On the characterization of Grauert tubes covered by the ball , 1997 .

[11]  Róbert Szőke,et al.  Automorphisms of certain Stein manifolds , 1995 .

[12]  H. Azad,et al.  Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces , 1992 .

[13]  P. Wong,et al.  Stein manifolds with compact symmetric center , 1991 .

[14]  L. Lempert,et al.  Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds , 1991 .

[15]  R. Szöke Complex structures on tangent bundles of Riemannian manifolds. , 1991 .

[16]  D. Akhiezer,et al.  On Stein extensions of real symmetric spaces , 1990 .

[17]  Mogens Flensted‐Jensen,et al.  GROUPS AND GEOMETRIC ANALYSIS Integral Geometry, Invariant Differential Operators, and Spherical Functions (Pure and Applied Mathematics: A Series of Monographs and Textbooks) , 1985 .

[18]  N. Sibony A CLASS OF HYPERBOLIC MANIFOLDS , 1981 .

[19]  Harris A. Jaffee Real forms of hermitian symmetric spaces , 1975 .

[20]  Gerald W. Schwarz SMOOTH FUNCTIONS INVARIANT UNDER THE ACTION OF A COMPACT LIE GROUP , 1975 .

[21]  Harish-Chandra,et al.  SPHERICAL FUNCTIONS ON A SEMISIMPLE LIE GROUP. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Stein Überlagerungen holomorph-vollständiger komplexer Räume , 1956 .

[23]  K. Neeb On the complex geometry of invariant domains in complexified symmetric spaces , 1999 .

[24]  J. Wolf Exhaustion Functions and Cohomology Vanishing Theorems for Open Orbits on Complex Flag Manifolds , 1995 .

[25]  Róbert Szőke,et al.  Complex structures on tangent bundles of Riemannian manifolds , 1991 .

[26]  V. Guillemin,et al.  Grauert tubes and the homogeneous Monge-Ampère equation. II , 1991 .

[27]  V. Guillemin,et al.  Grauert tubes and the homogeneous Monge-Ampère equation , 1991 .

[28]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[29]  Harris A. Jaffee Anti-holomorphic automorphisms of the exceptional symmetric domains , 1978 .

[30]  M. Lassalle Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact , 1978 .

[31]  A. Ash Smooth Compactification of Locally Symmetric Varieties , 1975 .

[32]  C. B. Allendoerfer,et al.  Hyperbolic manifolds and holomorphic mappings , 1970 .

[33]  小林 昭七 Hyperbolic manifolds and holomorphic mappings , 1970 .

[34]  S. Helgason LIE GROUPS AND SYMMETRIC SPACES. , 1968 .

[35]  A. Borel Compact Clifford-Klein forms of symmetric spaces , 1963 .