Robust observer for uncertain linear quantum systems

In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is in general unrealistic. Therefore, in this paper we consider a class of linear quantum systems subject to time-varying norm-bounded parametric uncertainty and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although the proposed observer is different from the optimal filter in the sense of the least mean square error, it is demonstrated in a typical quantum control problem that the observer is fairly robust against a parametric uncertainty even when the other estimators, the optimal Kalman filter and the risk-sensitive observer, fail in the estimation due to the uncertain perturbation.

[1]  Hideo Mabuchi,et al.  Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.

[2]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[3]  S. Mancini,et al.  Continuous quantum nondemolition feedback and unconditional atomic spin squeezing , 2002 .

[4]  N. Yamamoto Robust observer for uncertain linear quantum systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[5]  M. R. James A quantum Langevin formulation of risk-sensitive optimal control , 2004 .

[6]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[7]  Lihua Xie,et al.  Robust Kalman filtering for uncertain systems , 1994 .

[8]  Ian R. Petersen,et al.  Robust Properties of Risk-Sensitive Control , 2000, Math. Control. Signals Syst..

[9]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[10]  V. P. Belavkin,et al.  Quantum continual measurements and a posteriori collapse on CCR , 1992 .

[11]  V. P. Belavkin,et al.  Quantum Diffusion, Measurement and Filtering I , 1994 .

[12]  A C Doherty,et al.  Optimal unravellings for feedback control in linear quantum systems. , 2005, Physical review letters.

[13]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[14]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[15]  M. R. James,et al.  Risk-sensitive optimal control of quantum systems , 2004 .

[16]  D. McFarlane,et al.  Optimal guaranteed cost control and filtering for uncertain linear systems , 1994, IEEE Trans. Autom. Control..

[17]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[18]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.

[19]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[20]  STANDARD QUANTUM LIMITS FOR BROADBAND POSITION MEASUREMENT , 1998, quant-ph/9801039.

[21]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[22]  Uri Shaked,et al.  Robust minimum variance filtering , 1995, IEEE Trans. Signal Process..

[23]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[24]  A. Doherty,et al.  Robust quantum parameter estimation: Coherent magnetometry with feedback (16 pages) , 2003, quant-ph/0309101.

[25]  Luc Bouten,et al.  Stochastic Schrödinger equations , 2003 .

[26]  A. Bensoussan,et al.  Optimal control of partially observable stochastic systems with an exponential-of-integral performance index , 1985 .