Digitizing uncertainty modeling for reverse engineering applications: regression versus neural networks

The coordinate measuring machine is one of the two types of digitizers most popularly used in reverse engineering. A number of factors affect the digitizing uncertainty, such as travel speeds of the probe, pitch values (sampling points), probe angles (part orientations), probe sizes, and feature sizes. A proper selection of these parameters in a digitization or automatic inspection process can improve the digitizing accuracy for a given coordinate-measuring machine. To do so, some empirical models or decision rules are required. This paper applies and compares the nonlinear regression analysis and neural network modeling methods in developing empirical models for estimating the digitizing uncertainty. The models developed in this research can aid error prediction, accuracy improvement, and operation parameter selection in computer-aided reverse engineering and automatic inspection.

[1]  Saeid Motavalli,et al.  Automatic segmentation of digitized data for reverse engineering applications , 2000 .

[2]  A. Balsamo,et al.  A Method for Thermal-Deformation Corrections of CMMs , 1990 .

[3]  Zone-Ching Lin,et al.  A neural network-based algorithm that searches for the measuring points of a rule surface , 2000 .

[4]  Prasad K. Yarlagadda,et al.  Prediction of die casting process parameters by using an artificial neural network model for zinc alloys , 2000 .

[5]  D. K. Harrison,et al.  Improving error compensation via a fuzzy-neural hybrid model , 1999 .

[6]  K. Bellmann Daniel, C., F. S. WOOD, J. W. GORMAN: Fitting Equations to Data. Computer Analysis of Multifactor Data for Scientists and Engineers. John Wiley & Sons, New York-London-Sydney-Toronto 1974. XIV, 342 S., 132 Abb., 33 Tab., £6.50 , 1975 .

[7]  Suck-Joo Na,et al.  Optimum design based on mathematical model and neural network to predict weld parameters for fillet joints , 1997 .

[8]  C.-X. J. Feng,et al.  Experimental study of the effect of digitizing parameters on digitizing uncertainty with a CMM , 2002 .

[9]  H. Kunzmann,et al.  A Uniform Concept for Calibration, Acceptance Test, and Periodic Inspection of Coordinate Measuring Machines Using Reference Objects , 1990 .

[10]  Yin-Lin Shen,et al.  Pretravel compensation for horizontally oriented touch trigger probes with straight styli , 1999 .

[11]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[12]  S. H. Huang,et al.  Applications of neural networks in manufacturing: a state-of-the-art survey , 1995 .

[13]  Cuthbert Daniel,et al.  Fitting Equations to Data: Computer Analysis of Multifactor Data , 1980 .

[14]  David W. Coit,et al.  STATIC NEURAL NETWORK PROCESS MODELS : CONSIDERATIONS AND CASE STUDIES , 1998 .

[15]  Min-Yang Yang,et al.  Improved neural network model for reverse engineering , 2000 .

[16]  Kenneth W. Yee,et al.  Implementing fast part probing and error compensation on machine tools , 1990 .

[17]  A. Weckenmann,et al.  The Influence of Measurement Strategy on the Uncertainty of CMM-Measurements , 1998 .

[18]  Alice E. Smith,et al.  Reducing waste in casting with a predictive neural model , 1994, J. Intell. Manuf..

[19]  Alice E. Smith,et al.  COST ESTIMATION PREDICTIVE MODELING: REGRESSION VERSUS NEURAL NETWORK , 1997 .

[20]  S. Sartori,et al.  Geometric Error Measurement and Compensation of Machines , 1995 .

[21]  Ralph C. Veale,et al.  Error Compensation of Coordinate Measuring Machines , 1985 .

[22]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[23]  Eric R. Ziegel,et al.  Applied Statistics for Engineers and Physical Scientists , 1992 .

[24]  Bopaya Bidanda,et al.  A neural network process model for abrasive flow machining operations , 1998 .

[25]  Ted Busch Fundamentals of Dimensional Metrology , 1964 .