Satellite image deconvolution using complex wavelet packets

The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem. Donoho (1994) has proposed to deconvolve the image without regularization and to denoise the result in a wavelet basis by thresholding the transformed coefficients. We have developed a new filtering method, consisting of using a complex wavelet packet basis. Herein, the thresholding functions associated to the proposed method are automatically estimated. The estimation is performed within a Bayesian framework, by modeling the subbands using generalized Gaussian distributions, and by applying the maximum a posteriori (MAP) estimator on each coefficient. Compared to real wavelet-packet-based algorithms, the proposed method is shift invariant, provides good directionality properties and remains of complexity O(N).

[1]  Pierre Charbonnier,et al.  Reconstruction d''image: R'egularization avec prise en compte des discontinuit'es , 1994 .

[2]  M. Vetterli Filter banks allowing perfect reconstruction , 1986 .

[3]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[4]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Michel Barlaud,et al.  Image coding using wavelet transform , 1992, IEEE Trans. Image Process..

[6]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[7]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[8]  Josiane Zerubia,et al.  Hyperparameter Estimation for Satellite Image Restoration by a MCMCML Method , 1999, EMMCVPR.

[9]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[10]  Nick Kingsbury,et al.  The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters , 1998 .

[11]  Nick G. Kingsbury,et al.  The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[12]  C. Helstrom Image Restoration by the Method of Least Squares , 1967 .

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Anil K. Jain,et al.  A Sinusoidal Family of Unitary Transforms , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  B. Chalmond Image restoration using an estimated Markov model , 1988 .

[17]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[18]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[19]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[20]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[21]  Ronald R. Coifman,et al.  Wavelet analysis and signal processing , 1990 .

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Bernard Rouge,et al.  Restauration d'images par paquets d'ondelettes , 1997 .

[24]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[25]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[26]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[27]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[28]  Dirk Roose,et al.  Wavelet-based image denoising using a Markov random field a priori model , 1997, IEEE Trans. Image Process..

[29]  Josiane Zerubia,et al.  Estimation of adaptive parameters for satellite image deconvolution , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[30]  Jérôme Kalifa Restauration minimaux et deconvolution dans une base d'ondelettes miroirs , 1999 .

[31]  Fionn Murtagh,et al.  Multiresolution Support Applied to Image Filtering and Restoration , 1995, CVGIP Graph. Model. Image Process..

[32]  Eric L. Miller,et al.  Wavelet domain image restoration using edge preserving prior models , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[33]  Josiane Zerubia,et al.  Restauration automatique d'images satellitaires par une méthode MCMC , 1999 .

[34]  B. Silverman,et al.  Wavelets: The Key to Intermittent Information? , 2000 .

[35]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  Mário A. T. Figueiredo,et al.  Bayesian wavelet-based image estimation using noninformative priors , 1999, Optics & Photonics.

[37]  Pierre Moulin,et al.  Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors , 1999, IEEE Trans. Inf. Theory.

[38]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[39]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[40]  Francoise J. Preteux,et al.  Hierarchical Markov random field models applied to image analysis: a review , 1995, Optics + Photonics.

[41]  Laure Blanc-Féraud,et al.  Estimation d'hyperparamètres pour la restauration d'images satellitaires par une méthode MCMCML , 1998 .

[42]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[43]  Martin Vetterli,et al.  Spatial adaptive wavelet thresholding for image denoising , 1997, Proceedings of International Conference on Image Processing.