Coexistence of the Bandcount-Adding and Bandcount-Increment Scenarios

We investigate the structure of the chaotic domain of a specific one-dimensional piecewise linear map with one discontinuity. In this system, the region of ``robust" chaos is embedded between two periodic domains. One of them is organized by the period-adding scenario whereas the other one by the period-increment scenario with coexisting attractors. In the chaotic domain, the influence of both adjacent periodic domains leads to the coexistence of the recently discovered bandcount adding and bandcount-increment scenarios. In this work, we focus on the explanation of the overall structure of the chaotic domain and a description of the bandcount adding and bandcount increment scenarios.

[1]  G. Verghese,et al.  Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control , 2001 .

[2]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[3]  M. Stern Ueber eine zahlentheoretische Funktion. , 1858 .

[4]  Michael Schanz,et al.  The bandcount increment scenario. II. Interior structures , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[6]  S. R. Lopes,et al.  Boundary crises, fractal basin boundaries, and electric power collapses , 2003 .

[7]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[8]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[9]  Abraham C.-L. Chian,et al.  Complex economic dynamics: Chaotic saddle, crisis and intermittency , 2006 .

[10]  Michael Schanz,et al.  On multi-parametric bifurcations in a scalar piecewise-linear map , 2006 .

[11]  Volodymyr L. Maistrenko,et al.  On period-adding sequences of attracting cycles in piecewise linear maps , 1998 .

[12]  Abraham C.-L. Chian,et al.  Attractor merging crisis in chaotic business cycles , 2005 .

[13]  Gunther Karner The simplified Fermi accelerator in classical and quantum mechanics , 1994 .

[14]  Hiroyuki Fujita,et al.  A micromachined impact microactuator driven by electrostatic force , 2003 .

[15]  Michael Schanz,et al.  Multi-parametric bifurcations in a piecewise–linear discontinuous map , 2006 .

[16]  Chaos in driven Alfvén systems: boundary and interior crises , 2004 .

[17]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .

[18]  Michael Schanz,et al.  Border-Collision bifurcations in 1D Piecewise-Linear Maps and Leonov's Approach , 2010, Int. J. Bifurc. Chaos.

[19]  Universality and scaling in chaotic attractor-to-chaotic attractor transitions , 2002 .

[20]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[21]  Laura Gardini,et al.  Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.

[22]  Michael Schanz,et al.  The bandcount increment scenario. III. Deformed structures , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Michael Schanz,et al.  Codimension-three bifurcations: explanation of the complex one-, two-, and three-dimensional bifurcation structures in nonsmooth maps. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Enrico Fermi,et al.  On the Origin of the Cosmic Radiation , 1949 .

[25]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[26]  P V E McClintock,et al.  Dissipative area-preserving one-dimensional Fermi accelerator model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Michael Schanz,et al.  On the fully developed bandcount adding scenario , 2008 .

[28]  David J. W. Simpson,et al.  Bifurcations in Piecewise-Smooth Continuous Systems , 2010 .

[29]  J. Molenaar,et al.  Mappings of grazing-impact oscillators , 2001 .

[30]  Michael Schanz,et al.  On detection of multi-band chaotic attractors , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  B. Hao,et al.  Elementary Symbolic Dynamics And Chaos In Dissipative Systems , 1989 .

[32]  Volodymyr L. Maistrenko,et al.  Bifurcations of attracting cycles of piecewise linear interval maps , 1996 .

[33]  Michael Schanz,et al.  The bandcount increment scenario. I. Basic structures , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Jeffrey C. Lagarias,et al.  A walk along the branches of the extended Farey Tree , 1995, IBM J. Res. Dev..

[35]  Qinsheng Bi Chaos crisis in coupled Duffing's systems with initial phase difference , 2007 .

[36]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[37]  Soumitro Banerjee,et al.  Border-Collision bifurcations in One-Dimensional Discontinuous Maps , 2003, Int. J. Bifurc. Chaos.

[38]  Ali H. Nayfeh,et al.  Modeling and simulation methodology for impact microactuators , 2004 .