Environmental Memory of Polymer Networks under Stress

Generally reversible stimuli-responsive materials do not memorize the stimulus. In this study we describe an example in which stretched and constrained semi-crystalline polymer networks respond to solvent gases with stress and simultaneously memorize the concentration and the chemical nature of the solvent itself in their microstructure. This written solvent signature can even be deleted by temperature.

[1]  Ning Wang,et al.  Erratum to: Cyclodextrin-based hyperbranched polymers by acyclic diene metathesis polymerization of an ABn monomer: molecule design, synthesis, and characterization , 2012, Journal of Polymer Research.

[2]  Andreas Lendlein,et al.  Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes , 2009 .

[3]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[4]  A. Lendlein,et al.  Stimuli‐Sensitive Polymers , 2010, Advanced materials.

[5]  P. Flory Thermodynamics of High Polymer Solutions , 1941 .

[6]  G. Skirrow,et al.  Transport and equilibrium phenomena in gas–elastomer systems. II. Equilibrium phenomena , 1948 .

[7]  Marc Behl,et al.  Triple-shape polymers , 2010 .

[8]  F. Katzenberg,et al.  Shape‐Memory Natural Rubber: An Exceptional Material for Strain and Energy Storage , 2013 .

[9]  T. Xie Tunable polymer multi-shape memory effect , 2010, Nature.

[10]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[11]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[12]  Gabriele Sadowski,et al.  Solvent-sensitive reversible stress-response of shape memory natural rubber. , 2013, ACS applied materials & interfaces.

[13]  Metin Tolan,et al.  Stress-induced stabilization of crystals in shape memory natural rubber. , 2013, Macromolecular rapid communications.

[14]  Jun Yu Li,et al.  Shape‐Memory Effects in Polymer Networks Containing Reversibly Associating Side‐Groups , 2007 .

[15]  Wei Min Huang,et al.  Mechanisms of the multi-shape memory effect and temperature memory effect in shape memorypolymers , 2010 .

[16]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[17]  F. Katzenberg,et al.  Recoverable strain storage capacity of shape memory polyethylene , 2013 .

[18]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[19]  F. Katzenberg,et al.  Stress-induced melting of crystals in natural rubber: a new way to tailor the transition temperature of shape memory polymers. , 2012, Macromolecular rapid communications.

[20]  F. Katzenberg,et al.  Tunable Multiple‐Shape Memory Polyethylene Blends , 2013 .

[21]  N. Ricardo,et al.  Chitosan-graft-poly(acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization , 2012, Journal of polymer research.

[22]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[23]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[24]  G. Sadowski,et al.  Fickian and Non-Fickian Sorption Kinetics of Toluene in Glassy Polystyrene , 2005 .

[25]  Scott T Phillips,et al.  A self-powered polymeric material that responds autonomously and continuously to fleeting stimuli. , 2013, Angewandte Chemie.

[26]  Frank Katzenberg,et al.  Superheated rubber for cold storage. , 2011, Advanced materials.

[27]  Jinlian Hu,et al.  Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites , 2012 .

[28]  Wei Min Huang,et al.  Chemically induced morphing in polyurethane shape memory polymer micro fibers/springs , 2012 .