Design optimization for an SOI MOEMS accelerometer

With optimization being vital, the design optimization of a silicon-on-insulator (SOI) micro-opto-electro-mechanical systems accelerometer is discussed in this paper. This process has enabled a simplistic design that employs double-sided deep reactive ion etching (DRIE) on SOI wafer to be able to attain high sensitivity of 294 µW/G with a calculated proof mass displacement of 0.066 µm/G which was close to ANSYS simulated results of 0.061 µm/G. Optimization has also enabled an in-depth study of the effects of the different variables on the overall performance of the device.

[1]  James M. Sabatier,et al.  Ultrasonic Methods for Human Motion Detection , 2006 .

[2]  O. Paul,et al.  Process-dependent thin-film thermal conductivities for thermal CMOS MEMS , 2000, Journal of Microelectromechanical Systems.

[4]  G. F. Fernando,et al.  Two-axis optical fiber acclerometer , 2000 .

[5]  Scott R. Manalis,et al.  Sub-10 cm/sup 3/ interferometric accelerometer with nano-g resolution , 2002 .

[6]  Todd R. Kelley Optimization, an Important Stage of Engineering Design. , 2010 .

[8]  Sylvain Ballandras,et al.  Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation , 1998 .

[9]  Shekhar Bhansali,et al.  MEMS for biomedical applications , 2012 .

[10]  Yves-Alain Peter,et al.  In-plane silicon-on-insulator optical MEMS accelerometer using waveguide fabry-perot microcavity with silicon/air bragg mirrors , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[11]  J. C. Duke,et al.  Fiber optic sensors for predictive health monitoring , 2001, 2001 IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference. (Cat. No.01CH37237).

[12]  T. S. Alstrøm,et al.  Process optimization of ultrasonic spray coating of polymer films. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[13]  Vijayanand S. Moholkar,et al.  Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain , 2013 .

[14]  Y. Nemirovsky,et al.  Characterization of a novel micromachined accelerometer with enhanced-MIDOS , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[15]  Ai Qun Liu,et al.  Mechanical design and optimization of capacitive micromachined switch , 2001 .

[16]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[17]  Martin A. Schmidt,et al.  Sub-10 cm 3 Interferometric Accelerometer With Nanog Resolution , 2001 .

[18]  H. Xie,et al.  A 2.8-MM imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography , 2012, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[19]  Mohamed Gad-el-Hak,et al.  MEMS : Introduction and Fundamentals , 2005 .

[20]  H. Varum,et al.  Optical Fiber Accelerometer System for Structural Dynamic Monitoring , 2009, IEEE Sensors Journal.

[21]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.

[22]  Thomas P. Swiler,et al.  In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor , 2008 .

[23]  Adrian J. T. Teo,et al.  Highly sensitive optical motion detector , 2016, 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP).

[24]  Jian Zhang,et al.  Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS) , 2001 .