A Luminescent Molecular Thermometer for Long‐Term Absolute Temperature Measurements at the Nanoscale

Temperature is a fundamental thermodynamic variable, the measurement of which is crucial in countless scientific investigations and technological developments, accounting at present for 75%–80% of the sensor market throughout the world.[1] Traditional liquid-filled and bimetallic thermometers, thermocouples, pyrometers, and thermistors are generally not suitable for temperature measurements at scales below 10 μm. This intrinsic limitation has encouraged the development of new non-contact accurate thermometers with micrometric and nanometric precision, a challenging research topic increasingly hankered for [1–2].

[1]  P. Childs,et al.  Review of temperature measurement , 2000 .

[2]  Otto S. Wolfbeis,et al.  Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range , 2010, Advanced materials.

[3]  Shyam Bahadur Rai,et al.  Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry , 2009 .

[4]  T. Miyashita,et al.  Characterization of an ultrathin polymer optode and its application to temperature sensors based on luminescent europium complexesElectronic supplementary information (ESI) available: surface plasmon curves and X-ray diffraction pattern of p(DDA-Eu(TTA)3Phen) LB films. See http://www.rsc.org/suppdat , 2003 .

[5]  T. Schmedake,et al.  A Novel Approach to Monodisperse, Luminescent Silica Spheres , 2006 .

[6]  A. Khalid,et al.  2D surface thermal imaging using rise-time analysis from laser-induced luminescence phosphor thermometry , 2009 .

[7]  Hong Zhang,et al.  Effect of annealing on upconversion luminescence of ZnO : Er3+ nanocrystals and high thermal sensitivity , 2007 .

[8]  L. Alcácer,et al.  Sol−Gel Derived Urea Cross-Linked Organically Modified Silicates. 1. Room Temperature Mid-Infrared Spectra , 1999 .

[9]  V V Moshchalkov,et al.  Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles. , 2009, Optics express.

[10]  Luís D. Carlos,et al.  Fine‐Tuning of the Chromaticity of the Emission Color of Organic–Inorganic Hybrids Co‐Doped with EuIII, TbIII, and TmIII , 2002 .

[11]  W. Ryba-Romanowski,et al.  Influence of temperature on infrared to visible conversion in tellurite glass doped with erbium and ytterbium , 1993 .

[12]  Jaebeom Lee,et al.  Nanoparticle assemblies with molecular springs: a nanoscale thermometer. , 2005, Angewandte Chemie.

[13]  Larry R. Dalton,et al.  Dual luminophor pressure sensitive paint. II. Lifetime based measurement of pressure and temperature , 2003 .

[14]  H. Ishizawa,et al.  Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials , 2006 .

[15]  L. Kelly,et al.  A dual fluorescence temperature sensor based on perylene/exciplex interconversion. , 2001, Journal of the American Chemical Society.

[16]  A. P. Silva,et al.  Luminescent molecular thermometers , 2006 .

[17]  Schorer,et al.  Structural stability of short-period Si/Ge superlattices studied with Raman spectroscopy. , 1991, Physical review. B, Condensed matter.

[18]  G. Gillies,et al.  Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77°C , 2003 .

[19]  A. Heyes,et al.  Two-colour phosphor thermometry for surface temperature measurement , 2006 .

[20]  Yoshio Bando,et al.  Carbon nanothermometer containing gallium , 2002, Nature.

[21]  N. Kotov,et al.  Thermometer design at the nanoscale , 2007 .

[22]  Christian Bergaud,et al.  High-spatial-resolution surface-temperature mapping using fluorescent thermometry. , 2008, Small.

[23]  Lionel Aigouy,et al.  Scanning thermal imaging by near-field fluorescence spectroscopy , 2009, Nanotechnology.

[24]  S. Loening,et al.  Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia , 2001 .

[25]  Y. Harada,et al.  Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. , 2009, Journal of the American Chemical Society.

[26]  Toshitada Yoshihara,et al.  Temperature-dependent fluorescence lifetime of a fluorescent polymeric thermometer, poly(N-isopropylacrylamide), labeled by polarity and hydrogen bonding sensitive 4-sulfamoyl-7-aminobenzofurazan. , 2008, The journal of physical chemistry. B.

[27]  M. Estévez,et al.  Fluorophore-free luminescent organosilica nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[28]  Gregory D. Phelan,et al.  Europium beta-diketonate temperature sensors: Effects of ligands, matrix, and concentration , 2004 .

[29]  S. N. Baker,et al.  Noncontact two-color luminescence thermometry based on intramolecular luminophore cyclization within an ionic liquid. , 2003, Chemical communications.

[30]  G. Gillies,et al.  Remote thermometry with thermographic phosphors: Instrumentation and applications , 1997 .

[31]  Sudheer Kumar Singh,et al.  Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route , 2009 .

[32]  K. Chattopadhyay,et al.  Impedance spectroscopic studies of nickel nanocluster in silica matrix synthesized by sol–gel method , 2008 .

[33]  M. Mortier,et al.  AC thermal imaging of a microwire with a fluorescent nanocrystal: Influence of the near field on the thermal contrast , 2009 .

[34]  Vikram C. Sundar,et al.  Quantum-dot optical temperature probes , 2003 .

[35]  Kazunori Mitsuo,et al.  Luminescent polymer film containing tetranuclear Eu(III) complex as temperature-sensing device , 2008 .

[36]  Oscar L. Malta,et al.  Energy Transfer Mechanisms in Organic−Inorganic Hybrids Incorporating Europium(III): A Quantitative Assessment by Light Emission Spectroscopy , 2007 .

[37]  Rute A. S. Ferreira,et al.  Lanthanide‐Containing Light‐Emitting Organic–Inorganic Hybrids: A Bet on the Future , 2009, Advanced materials.