Peridynamics for fatigue life and residual strength prediction of composite laminates

Abstract This study presents an application of peridynamics to predict damage initiation and growth in fiber reinforced composites under cyclic loading. The fatigue model utilizes standard S-N fatigue data for a lamina along with the critical energy release rate values. The fidelity of this model is established by simulating the tests conducted by the Air Force Research Laboratory under the Tech Scout Project. As part of this project, the AFRL tested open-hole composite laminates made of IM7/977-3 for three different layups under cyclic loads for strength and failure progression. The peridynamic predictions agree with the reduction in stiffness and strength as a function of number of load cycles. Also, the progressive damage predictions capture the general characteristics of the experimentally observed damage patterns.

[1]  J.-F. Maire,et al.  Fatigue Damage Modeling of Composite Structures: the ONERA Viewpoint , 2015 .

[2]  Wim Van Paepegem,et al.  Fatigue damage modeling of fibre-reinforced composite materials: Review , 2001 .

[3]  Jason E. Action,et al.  Simulation of Fatigue Damage in Quasi-Isotropic Open-Hole Tension Coupon using the Kinetic Theory of Fracture , 2015 .

[5]  Stewart Andrew Silling,et al.  Peridynamic model for fatigue cracking. , 2014 .

[6]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[7]  Jifeng Xu,et al.  Peridynamic Analysis of Impact Damage in Composite Laminates , 2008 .

[8]  Jifeng Xu,et al.  Hail Impact Characteristics of a Hybrid Material by Advanced Analysis Techniques and Testing , 2011 .

[9]  E. Madenci,et al.  Peridynamic theory for progressive damage prediction in center-cracked composite laminates , 2009 .

[10]  E. Madenci,et al.  Peridynamic modeling of delamination growth in composite laminates , 2015 .

[11]  Erdogan Madenci,et al.  Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence , 2016 .

[12]  Erkan Oterkus,et al.  Damage growth prediction from loaded composite fastener holes by using peridynamic theory , 2010 .

[13]  D. Mollenhauer,et al.  Progressive failure simulation in laminated composites under fatigue loading by using discrete damage modeling , 2016 .

[14]  Lockheed Martin,et al.  Assessment of Composite Damage Growth Tools for Aircraft Structure Part I , 2015 .

[15]  E. Madenci,et al.  Peridynamic Modeling of Defects in Composites , 2015 .

[16]  Ramesh Talreja,et al.  Physical modelling of failure in composites , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Jeffrey A. Wollschlager,et al.  Assessment of multiscale designer for fatigue life prediction of advanced composite aircraft structures , 2017 .

[18]  Jifeng Xu,et al.  Damage and Failure Analysis of Composite Laminates Under Biaxial Loads. , 2007 .

[19]  M. Benzeggagh,et al.  Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading , 1997 .

[20]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[21]  Michael R Wisnom,et al.  An experimental and numerical investigation into the damage mechanisms in notched composites , 2009 .

[22]  Jason E. Action,et al.  Fatigue Damage Prediction in Quasi-Isotropic Open-Hole Tension Coupon using the Kinetic Theory of Fracture , 2016 .

[23]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[24]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[25]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[26]  Ramesh Talreja,et al.  Damage and Failure of Composite Materials , 2012 .

[27]  Erkan Oterkus,et al.  Fatigue failure model with peridynamic theory , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[28]  Hamsasew M. Sertse,et al.  A Micromechanical Approach to High Cycle Fatigue Analysis and Life Prediction of Heterogeneous Materials , 2016 .

[29]  Erdogan Madenci,et al.  Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot , 2012 .

[30]  Jifeng Xu,et al.  Peridynamic analysis of damage and failure in composites. , 2006 .

[31]  Erkan Oterkus,et al.  Peridynamic analysis of fiber-reinforced composite materials , 2012 .

[32]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[33]  Arun K. Subramaniyan,et al.  Validation of a peridynamic model for fatigue cracking , 2016 .

[34]  Leif Asp,et al.  Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading , 2004 .