Quantum size effect on longitudinal spatial hole burning in MQW lambda /4-shifted DFB lasers

A method for reducing the effect of longitudinal spatial hole burning on the spectral properties of lambda /4-shifted distributed feedback (DFB) lasers is presented. The method is based on the quantum size effect in the multiquantum well (MQW) structure, and is demonstrated experimentally and theoretically. First the effects of the longitudinal spatial hole burning on the spectral behavior are shown to be determined by the linewidth enhancement factor, not by the differential index or the optical confinement in the active layer. The reduction of the linewidth enhancement factor is found to be effective in suppressing the spectral instability and broadening induced by the longitudinal spatial hole burning. The theory is confirmed by qualitative and quantitative experimental measurements. >

[1]  Yuichi Matsushima,et al.  Λ/4-shifted InGaAsP/InP DFB lasers by simultaneous holographic exposure of positive and negative photoresists , 1984 .

[2]  K. Uomi,et al.  Stabilization of the longitudinal mode against spatial hole burning in lambda /4-shifted DFB lasers by quantum size effect , 1990, IEEE Photonics Technology Letters.

[3]  Robert Blondeau,et al.  Ultra-low-threshold, high-bandwidth, very-low noise operation of 1.52 mu m GaInAsP/InP DFB buried ridge structure laser diodes entirely grown by MOCVD , 1989 .

[4]  Gerhard Heise,et al.  Phase-Shifted Holographic Gratings For Distributed Feedback Lasers , 1986, Other Conferences.

[5]  Masahiro Asada,et al.  Measurements of refractive-index variation with free carrier density and temperature for 1.6 μm GaInAsP/InP lasers , 1980 .

[6]  N. Chinone,et al.  Stability of the longitudinal mode in lambda /4-shifted InGaAsP/InP DFB lasers , 1989 .

[7]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[8]  P. Platzman,et al.  An optimized π/2 distributed feedback laser , 1985, IEEE Journal of Quantum Electronics.

[9]  S. Akiba,et al.  Suppression of longitudinal spatial hole-burning effect in lambda /4-shifted DFB lasers by nonuniform current distribution , 1989 .

[10]  J. Buus Dynamic line broadening of semiconductor lasers modulated at high frequencies , 1985 .

[11]  Govind P. Agrawal,et al.  Distributed feedback lasers with multiple phase‐shift regions , 1988 .

[12]  Fumio Koyama,et al.  1.5 μm phase-shifted DFB lasers for single-mode operation , 1984 .

[13]  K. Uomi,et al.  Ultrahigh-speed 1.55 mu m lambda /4-shifted DFB PIQ-BH lasers with bandwidth of 17 GHz , 1989 .

[14]  Yuzo Hirayama,et al.  High-speed 1.5 mu m self-aligned constricted mesa DFB lasers grown entirely by MOCVD , 1989 .

[15]  L. D. Westbrook,et al.  Intensity noise in 1.5 mu m GaInAs quantum well buried heterostructure lasers , 1989 .

[16]  Charles Howard Henry,et al.  Performance of distributed feedback lasers designed to favor the energy gap mode , 1985 .

[17]  M. Yamada,et al.  Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. , 1987, Applied optics.

[18]  N. Chinone,et al.  Novel method to fabricate corrugation for a λ/4-shifted distributed feedback laser using a grating photomask , 1989 .

[19]  H. Haus,et al.  Antisymmetric taper of distributed feedback lasers , 1976, IEEE Journal of Quantum Electronics.

[20]  K. Uomi,et al.  Ultralow chirp and high-speed 1.55 mu m multiquantum well lambda /4-shifted DFB lasers , 1990, IEEE Photonics Technology Letters.

[21]  T. Kimura,et al.  Linewidth reduction by coupled phase-shift distributed-feedback lasers , 1987 .

[22]  K. Uomi,et al.  Spectral linewidth reduction by low spatial hole burning in 1.5 mu m multi-quantum-well lambda 4-shifted DFB lasers , 1990 .

[23]  M. Aoki,et al.  Oscillation wavelength and laser structure dependence of nonlinear damping effect in semiconductor lasers , 1991 .

[24]  Linewidth broadening due to longitudinal spatial hole burning in a long distributed feedback laser , 1988 .

[25]  Yuzo Hirayama,et al.  Five-wavelength integrated DFB laser arrays with quarter-wave-shifted structures , 1987 .

[26]  Y. Kotaki,et al.  Long-cavity, multiple-phase-shift, distributed feedback laser for linewidth narrowing , 1989 .

[27]  J. Kinoshita,et al.  Transient chirping in distributed-feedback (DFB) lasers: effect of spatial hole-burning along the laser axis , 1988 .

[28]  N. Chinone,et al.  Corrugation-pitch-modulated phase-shifted DFB laser , 1989, IEEE Photonics Technology Letters.

[29]  N. Henmi,et al.  Analysis of wavelength chirping for /spl lambda//4 shifted dfb ld considering spatial hole-burning along cavity , 1990, 12th IEEE International Conference on Semiconductor Laser.

[30]  S. Yamakoshi,et al.  Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers , 1987 .

[31]  B. Tromborg,et al.  Spectral linewidth of DFB lasers including the effects of spatial holeburning and nonuniform current injection , 1990, IEEE Photonics Technology Letters.

[32]  K. Kishino,et al.  Wavelength variation of 1.6 µm wavelength buried heterostructure GaInAsP/InP lasers due to direct modulation , 1982, IEEE Journal of Quantum Electronics.

[33]  Yoshiaki Nakano,et al.  Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation , 1984 .