Density Functional Study of Fluorinated Single-Walled Silicon Carbide Nanotubes

Structural, electronic, and magnetic properties of fluorine (F)-doped silicon carbide nanotubes (SiCNTs) are studied using density functional theory. It is found that F atoms prefer to adsorb on Si sites of both (8, 0) and (6, 6) SiCNTs. The chemisorption of the F atom on the Si site also induces a push down of the Fermi level for both types of SiCNTs, whereas the Fermi levels are lifted up when the F atom is attached on the C site of the tubes. Our calculation results show that fluorine adsorption for either a single silicon or a single carbon atom yields spontaneous magnetization, and the net magnetic moment is 1 μB. This may lead to a new approach to tune the electronic and magnetic properties of SiCNTs toward some nanoelectronics and metal-free magnetic materials.

[1]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[2]  Andrew J. Steckl,et al.  Reactive ion etching of SiC thin films using fluorinated gases , 1986 .

[3]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[4]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[5]  B. Delley,et al.  Analytic energy derivatives in the numerical local‐density‐functional approach , 1991 .

[6]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[7]  Andrew J. Steckl,et al.  A Review of SiC Reactive Ion Etching in Fluorinated Plasmas , 1997 .

[8]  A. Rinzler,et al.  Fluorination of single-wall carbon nanotubes , 1998 .

[9]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[10]  B. Delley A scattering theoretic approach to scalar relativistic corrections on bonding , 1998 .

[11]  Stephan Roche,et al.  EFFECTS OF MAGNETIC FIELD AND DISORDER ON THE ELECTRONIC PROPERTIES OF CARBON NANOTUBES , 1999 .

[12]  G. Scuseria,et al.  Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study , 1999 .

[13]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[14]  J. Carlsson,et al.  Hydrogen and Fluorine Adsorption on the h-BN (001) Plane , 1999 .

[15]  W. Aulbur,et al.  Quasiparticle calculations in solids , 2000 .

[16]  H. Touhara,et al.  Property control of carbon materials by fluorination , 2000 .

[17]  J. K. Perry,et al.  Antiferromagnetic band structure of La 2 CuO 4 : Becke- 3-Lee-Yang-Parr calculations , 2001 .

[18]  C. Pham‐Huu,et al.  The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential , 2001 .

[19]  G. Scuseria,et al.  Fluorinated single-wall carbon nanotubes , 2001 .

[20]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[21]  K. An,et al.  X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes , 2002 .

[22]  W. E. Billups,et al.  Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. , 2002, Accounts of chemical research.

[23]  L. Duclaux Review of the doping of carbon nanotubes (multiwalled and single-walled) , 2002 .

[24]  T. Okazaki,et al.  Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes , 2002, Nature.

[25]  H. Bettinger Experimental and computational investigations of the properties of fluorinated single-walled carbon nanotubes. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[27]  G. Froudakis,et al.  From Pure Carbon to Silicon−Carbon Nanotubes: An Ab-initio Study , 2003 .

[28]  G. Scuseria,et al.  Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study. , 2004, The Journal of chemical physics.

[29]  Xiangdong Liu,et al.  Density-functional theory calculations of XH3-decorated sic nanotubes (X ={C, Si}) : Structures, energetics, and electronic structures , 2005 .

[30]  Young-Woo Son,et al.  Electrical switching in metallic carbon nanotubes. , 2005, Physical review letters.

[31]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[32]  K. Loh,et al.  Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption , 2005 .

[33]  C. Zhi,et al.  Perfectly dissolved boron nitride nanotubes due to polymer wrapping. , 2005, Journal of the American Chemical Society.

[34]  Yueyuan Xia,et al.  Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations , 2005 .

[35]  Are fluorinated boron nitride nanotubes n-type semiconductors? , 2005, cond-mat/0511217.

[36]  Á. Gali,et al.  Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes , 2006 .

[37]  Zhengxiang Gao,et al.  Structural and electronic properties of fluorinated boron nitride nanotubes. , 2006, The journal of physical chemistry. B.

[38]  Jijun Zhao,et al.  Atomic and electronic structures of fluorinated BN nanotubes: computational study. , 2006, The journal of physical chemistry. B.

[39]  J. Lin,et al.  Ab initio study of F- and Cl-functionalized single wall carbon nanotubes , 2006 .

[40]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[41]  Lei Zhang,et al.  Solid-State NMR Analysis of Fluorinated Single-Walled Carbon Nanotubes: Assessing the Extent of Fluorination , 2007 .

[42]  Young-Seak Lee Syntheses and properties of fluorinated carbon materials , 2007 .

[43]  Zhonghua Zhu,et al.  Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations , 2008 .

[44]  Jingxiang Zhao,et al.  Silicon Carbide Nanotubes Functionalized by Transition Metal Atoms: A Density-Functional Study , 2008 .

[45]  H. Kang,et al.  First Principles Study of NO and NNO Chemisorption on Silicon Carbide Nanotubes and Other Nanotubes. , 2008, Journal of chemical theory and computation.

[46]  Gustavo E. Scuseria,et al.  Half-metallic zigzag carbon nanotube dots. , 2008, ACS nano.

[47]  W. Duan,et al.  Electronic and magnetic properties of partially open carbon nanotubes. , 2009, Journal of the American Chemical Society.

[48]  Y. Hayafuji,et al.  Electronic Structures of 4H-SiC with Group I and VII Elements: First-Principles Study of Possible p-Type Doping , 2009 .

[49]  Sung Ho Park,et al.  A first principles study of NO2 chemisorption on silicon carbide nanotubes , 2009 .

[50]  L. Spinelle,et al.  Fluorination of silicon carbide thin films using pure F2 gas or XeF2 , 2010 .

[51]  Theoretical Studies of the Magnetism of the First-Row Adatom on the Silicon Carbide (SiC) Nanotube , 2010 .

[52]  K. Liew,et al.  Silicon Carbide Nanotubes Serving as a Highly Sensitive Gas Chemical Sensor for Formaldehyde , 2011 .