Snake venoms: toolbox of the neurobiologist.

Neurotoxins isolated from snake venom exhibit very specific actions on nervous structures. Their use in neurobiological research contributed to a better understanding of neuromuscular transmission and led to the isolation of a receptor, the nicotinic acetylcholine receptor.

[1]  H. Breithaupt Enzymatic characteristics of crotalus phospholipase A2 and the crotoxin complex. , 1976, Toxicon : official journal of the International Society on Toxinology.

[2]  A. Mathie,et al.  Nicotinic acetylcholine receptors of nerve and muscle: Functional aspects , 1987 .

[3]  A. Harvey,et al.  Toxins from Mamba Venoms that Facilitate Neuroiluscular Transmission , 1984 .

[4]  T. Endo,et al.  Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. , 1987, Pharmacology & therapeutics.

[5]  V. Chiappinelli Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors. , 1985, Pharmacology & therapeutics.

[6]  K. Slotta,et al.  Schlangengifte, III. Mitteil.: Reinigung und Krystallisation des Klapperschlangen‐Giftes , 1938 .

[7]  A. Harvey,et al.  Dendrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release. , 1985, Pharmacology & therapeutics.

[8]  J. Changeux,et al.  Use of a snake venom toxin to characterize the cholinergic receptor protein. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Harris Phospholipases in snake venoms and their effects on nerve and muscle. , 1985, Pharmacology & therapeutics.

[10]  C. Yang CRYSTALLIZATION AND PROPERTIES OF COBROTOXIN FROM FORMOSAN COBRA VENOM. , 1965, The Journal of biological chemistry.

[11]  P. Corfield,et al.  Erabutoxin b. Structure/function relationships following initial protein refinement at 0.140-nm resolution. , 1986, European journal of biochemistry.