Catalysis by metal nanoparticles embedded on metal-organic frameworks.

The present review describes the use of metal-organic frameworks (MOFs) as porous matrices to embed metal nanoparticles (MNPs) and occasionally metal oxide clusters, which are subsequently used as heterogeneous catalysts. The review is organized according to the embedded metal including Pd, Au, Ru, Cu, Pt, Ni and Ag. Emphasis is also given in the various methodologies reported for the formation of the NPs and the characterization techniques. The reactions described with this type of solid catalysts include condensation, hydrogenations, carbon-carbon coupling, alcohol oxidations and methanol synthesis among others. Remaining issues in this field have also been indicated.

[1]  Hao Wu,et al.  Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts , 2012 .

[2]  Freek Kapteijn,et al.  Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering , 2012 .

[3]  H. García,et al.  Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites , 2012 .

[4]  H. García,et al.  Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide , 2012 .

[5]  Freek Kapteijn,et al.  Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives , 2012 .

[6]  C. Pinel,et al.  Tailoring metal-organic framework catalysts by click chemistry. , 2012, Dalton transactions.

[7]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[8]  D. Bradshaw,et al.  Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. , 2012, Chemical Society reviews.

[9]  Yan Liu,et al.  Mesoporous metal-organic framework materials. , 2012, Chemical Society reviews.

[10]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[11]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[12]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[13]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[14]  Jianrong Li,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[15]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical reviews.

[16]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[17]  H. García,et al.  Iron(III) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide , 2012 .

[18]  Tianfu Liu,et al.  Palladium Nanoparticles Supported on Mixed-Linker Metal–Organic Frameworks as Highly Active Catalysts for Heck Reactions , 2012 .

[19]  D. Su,et al.  Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction , 2012, Catalysis Letters.

[20]  J. Klinowski,et al.  Ligand design for functional metal-organic frameworks. , 2012, Chemical Society reviews.

[21]  C. Su,et al.  Three-Dimensional Phosphine Metal–Organic Frameworks Assembled from Cu(I) and Pyridyl Diphosphine , 2012 .

[22]  J. Grunwaldt,et al.  Aerobic epoxidation of olefins catalyzed by the cobalt-based metal-organic framework STA-12(Co). , 2012, Chemistry.

[23]  C. Chai,et al.  Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. , 2012, Chemical communications.

[24]  S. Tangestaninejad,et al.  MIL-101 metal–organic framework: A highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2 , 2012 .

[25]  Y. Schuurman,et al.  Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study , 2011 .

[26]  Z. Fu,et al.  A layered amino-functionalized zinc-terephthalate metal organic framework: Structure, characterization and catalytic performance for Knoevenagel condensation , 2011 .

[27]  Zu-Jin Lin,et al.  Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. , 2011, Chemistry.

[28]  R. Luque,et al.  A Tuneable Bifunctional Water‐Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols , 2011 .

[29]  M. Pera‐Titus,et al.  Engineering MIL-53(Al) flexibility by controlling amino tags. , 2011, Dalton transactions.

[30]  Tianfu Liu,et al.  Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction , 2011 .

[31]  Xinggui Zhou,et al.  Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water , 2011 .

[32]  S. Huh,et al.  Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. , 2011, Dalton transactions.

[33]  A. Corma,et al.  Intracrystalline diffusion in metal organic framework during heterogeneous catalysis: influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. , 2011, Dalton transactions.

[34]  H. Kawasaki,et al.  Controlled self-assembly of metal-organic frameworks on metal nanoparticles for efficient synthesis of hybrid nanostructures. , 2011, ACS applied materials & interfaces.

[35]  V. Polshettiwar,et al.  Nanocatalysts for Suzuki cross-coupling reactions. , 2011, Chemical Society reviews.

[36]  H. García,et al.  Metal–organic frameworks as heterogeneous catalysts for oxidation reactions , 2011 .

[37]  Joachim Sauer,et al.  Pyrazolate-based cobalt(II)-containing metal-organic frameworks in heterogeneous catalytic oxidation reactions: elucidating the role of entatic states for biomimetic oxidation processes. , 2011, Chemistry.

[38]  R. Kempe,et al.  Selective palladium-loaded MIL-101 catalysts. , 2011, Chemistry.

[39]  Naziya Pathan,et al.  Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids , 2011 .

[40]  H. García,et al.  Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework , 2011 .

[41]  M. Flytzani-Stephanopoulos,et al.  Decoration with ceria nanoparticles activates inert gold island/film surfaces for the CO oxidation reaction , 2011 .

[42]  H. García,et al.  Chemical instability of Cu3(BTC)2 by reaction with thiols , 2011 .

[43]  A. Corma,et al.  Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. , 2011, Dalton transactions.

[44]  H. García,et al.  Atmospheric-pressure, liquid-phase, selective aerobic oxidation of alkanes catalysed by metal-organic frameworks. , 2011, Chemistry.

[45]  Y. Jugnet,et al.  Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina , 2011 .

[46]  Chuande Wu,et al.  A metalloporphyrin functionalized metal-organic framework for selective oxidization of styrene. , 2011, Chemical communications.

[47]  Johan Hofkens,et al.  Metal–Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures , 2011, Advanced materials.

[48]  P. Savage,et al.  Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. , 2011, ChemSusChem.

[49]  J. V. van Bokhoven,et al.  Catalysis by metal-organic frameworks: fundamentals and opportunities. , 2011, Physical chemistry chemical physics : PCCP.

[50]  Á. Molnár Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. , 2011, Chemical reviews.

[51]  Qiang Xu,et al.  Porous metal-organic frameworks as platforms for functional applications. , 2011, Chemical communications.

[52]  A. Corma,et al.  Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. , 2011, Chemical communications.

[53]  Jingguang G. Chen,et al.  The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ-Al2O3 and TiO2 , 2011 .

[54]  Rob Ameloot,et al.  An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. , 2011, Chemical communications.

[55]  E. T. Nadres,et al.  Palladium-catalyzed indole, pyrrole, and furan arylation by aryl chlorides. , 2011, The Journal of organic chemistry.

[56]  N. Phan,et al.  Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction , 2011 .

[57]  J. Čejka,et al.  [Cu3(BTC)2]: A Metal–Organic Framework Catalyst for the Friedländer Reaction , 2011 .

[58]  B. Han,et al.  Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst , 2011 .

[59]  T. Akita,et al.  Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. , 2011, Journal of the American Chemical Society.

[60]  H. García,et al.  Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO , 2011 .

[61]  H. García,et al.  Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol , 2010 .

[62]  S. Che,et al.  Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction , 2010 .

[63]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts , 2010 .

[64]  H. García,et al.  Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal–Organic Framework Solids , 2010 .

[65]  O. Lebedev,et al.  Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs , 2010 .

[66]  H. García,et al.  Aerobic oxidation of thiols to disulfides using iron metal-organic frameworks as solid redox catalysts. , 2010, Chemical communications.

[67]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[68]  S. Teat,et al.  Manganese‐Based Metal–Organic Frameworks as Heterogeneous Catalysts for the Cyanosilylation of Acetaldehyde , 2010 .

[69]  H. García,et al.  Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides. , 2010, Chemistry.

[70]  Z. Tang,et al.  Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols , 2010 .

[71]  Seth M. Cohen,et al.  Modular, active, and robust Lewis acid catalysts supported on a metal-organic framework. , 2010, Inorganic chemistry.

[72]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[73]  Young Kwan Park,et al.  Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. , 2010, Chemical communications.

[74]  H. García,et al.  Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate , 2010 .

[75]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[76]  Yingwei Li,et al.  Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. , 2010, Chemical communications.

[77]  H. García,et al.  Claisen–Schmidt Condensation Catalyzed by Metal‐Organic Frameworks , 2010 .

[78]  M. Latroche,et al.  Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. , 2010, Journal of the American Chemical Society.

[79]  Y. Liu,et al.  Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO. , 2010, Journal of the American Chemical Society.

[80]  T. Akita,et al.  One-potN-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers , 2009 .

[81]  C. Pinel,et al.  Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks , 2009 .

[82]  M. S. El-shall,et al.  Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101† , 2009 .

[83]  H. García,et al.  Metal-Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine , 2009 .

[84]  H. García,et al.  Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide , 2009 .

[85]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[86]  M. Allendorf,et al.  Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. , 2009, Nano letters.

[87]  E. Gutiérrez‐Puebla,et al.  Reversible breaking and forming of metal-ligand coordination bonds: temperature-triggered single-crystal to single-crystal transformation in a metal-organic framework. , 2009, Chemistry.

[88]  S. Nguyen,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[89]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[90]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[91]  P. K. Bharadwaj,et al.  Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers , 2009 .

[92]  Zheng Wang,et al.  Self-supported catalysts. , 2009, Chemical reviews.

[93]  Diego Luna,et al.  Sustainable preparation of supported metal nanoparticles and their applications in catalysis. , 2009, ChemSusChem.

[94]  S. Buchwald,et al.  Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. , 2008, Accounts of chemical research.

[95]  Kresten Egeblad,et al.  Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. , 2008, Chemical Society reviews.

[96]  T. Akita,et al.  Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. , 2008, Chemistry.

[97]  A. Jess,et al.  Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. , 2008, Chemistry.

[98]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[99]  Avelino Corma,et al.  Supported gold nanoparticles as catalysts for organic reactions. , 2008, Chemical Society reviews.

[100]  A. Baiker,et al.  Copper-based metal-organic framework for the facile ring-opening of epoxides , 2008 .

[101]  M. Muhler,et al.  Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors : Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis , 2008 .

[102]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[103]  Gustaaf Van Tendeloo,et al.  Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. , 2008, Journal of the American Chemical Society.

[104]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[105]  S. Kaskel,et al.  Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst , 2008 .

[106]  R. T. Yang,et al.  Gas adsorption and storage in metal-organic framework MOF-177. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[107]  Young Kwan Park,et al.  Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. , 2007, Angewandte Chemie.

[108]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[109]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[110]  A Stephen K Hashmi,et al.  Gold-catalyzed organic reactions. , 2007, Chemical reviews.

[111]  A. Corma,et al.  Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols , 2007 .

[112]  Manuel Moliner,et al.  High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings , 2006, Nature.

[113]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[114]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[115]  S. Kitagawa,et al.  Pore surface engineering of microporous coordination polymers. , 2006, Chemical communications.

[116]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[117]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[118]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[119]  A. Corma,et al.  A collaborative effect between gold and a support induces the selective oxidation of alcohols. , 2005, Angewandte Chemie.

[120]  M. Brown,et al.  Direct palladium-catalyzed C-2 and C-3 arylation of indoles: a mechanistic rationale for regioselectivity. , 2005, Journal of the American Chemical Society.

[121]  I. Wachs Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials , 2005 .

[122]  Ji Hyun Kim,et al.  Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature. , 2005, Angewandte Chemie.

[123]  Gérard Férey,et al.  Hybrid organic-inorganic frameworks: routes for computational design and structure prediction. , 2004, Angewandte Chemie.

[124]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[125]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[126]  M. P. Suh,et al.  A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. , 2004, Angewandte Chemie.

[127]  M. Muhler,et al.  MOCVD-loading of mesoporous siliceous matrices with Cu/ZnO: supported catalysts for methanol synthesis. , 2004, Angewandte Chemie.

[128]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[129]  A. Corma,et al.  Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. , 2003, Chemical reviews.

[130]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[131]  U. R. Pillai,et al.  Oxidation of alcohols over Fe3+/montmorillonite-K10 using hydrogen peroxide , 2003 .

[132]  R. Pleixats,et al.  Formation of carbon--carbon bonds under catalysis by transition-metal nanoparticles. , 2003, Accounts of chemical research.

[133]  M. White,et al.  Zeolite-confined Nano-RuO(2): A green, selective, and efficient catalyst for aerobic alcohol oxidation. , 2003, Journal of the American Chemical Society.

[134]  J. Boilot,et al.  Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. , 2003, Chemical communications.

[135]  N. Mizuno,et al.  Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. , 2002, Angewandte Chemie.

[136]  M. Bradley,et al.  Recoverable catalysts and reagents using recyclable polystyrene-based supports. , 2002, Chemical reviews.

[137]  Jordi Rius,et al.  A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst , 2002, Nature.

[138]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[139]  Bing Zhao,et al.  Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. , 2002, Chemical communications.

[140]  A. Biffis,et al.  Palladium metal catalysts in Heck CC coupling reactions , 2001 .

[141]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[142]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[143]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[144]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[145]  L. Prati,et al.  New gold catalysts for liquid phase oxidation , 1999 .

[146]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[147]  G. B. Shul’pin,et al.  ACTIVATION OF C-H BONDS BY METAL COMPLEXES , 1997 .

[148]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[149]  A. Wokaun,et al.  CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism , 1992 .

[150]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[151]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[152]  H. Jüntgen Activated carbon as catalyst support: A review of new research results☆ , 1986 .

[153]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines , 2012 .

[154]  Huanling Song,et al.  Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties , 2012 .

[155]  O. Lebedev,et al.  2 ) : Preparation and Microstructural Characterisation , 2011 .

[156]  R. Fischer,et al.  Doping of metal-organic frameworks with functional guest molecules and nanoparticles. , 2010, Topics in current chemistry.

[157]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[158]  Kangnian Fan,et al.  Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. , 2008, Angewandte Chemie.