Geometry of large Boltzmann outerplanar maps
暂无分享,去创建一个
[1] Marc Noy,et al. Counting Outerplanar Maps , 2017, Electron. J. Comb..
[2] I. Kortchemski,et al. Random stable looptrees , 2013, 1304.1044.
[3] Random trees with superexponential branching weights , 2011, 1104.2810.
[4] I. Kortchemski. Limit theorems for conditioned non-generic Galton-Watson trees , 2012, 1205.3145.
[5] T. F. Móri. On random trees , 2002 .
[6] T. Jonsson,et al. Condensation in Nongeneric Trees , 2010, 1009.1826.
[7] Thomas Duquesne,et al. Random Trees, Levy Processes and Spatial Branching Processes , 2002 .
[8] Nicolas Bonichon,et al. Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding, and Generation , 2003, WG.
[9] Sigurdur Orn Stef'ansson,et al. Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.
[10] I. Kortchemski,et al. Percolation on random triangulations and stable looptrees , 2013, 1307.6818.
[11] Benedikt Stufler,et al. Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.
[12] Richard Ehrenborg,et al. Schröder Parenthesizations and Chordates , 1994, J. Comb. Theory, Ser. A.
[13] Benedikt Stufler. Limits of random tree-like discrete structures , 2016, Probability Surveys.
[14] Gr'egory Miermont,et al. Tessellations of random maps of arbitrary genus , 2007, 0712.3688.
[15] Timothy Budd,et al. The Peeling Process of Infinite Boltzmann Planar Maps , 2015, Electron. J. Comb..
[16] L. Richier. Limits of the boundary of random planar maps , 2017, 1704.01950.
[17] S. Foss,et al. An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .
[18] D. Aldous. Stochastic Analysis: The Continuum random tree II: an overview , 1991 .
[19] Igor Kortchemski,et al. Sub-exponential tail bounds for conditioned stable Bienaymé–Galton–Watson trees , 2015, 1504.04358.
[20] T. Budd,et al. Geometry of infinite planar maps with high degrees , 2016, 1602.01328.
[21] Alessandra Caraceni. The Scaling Limit of Random Outerplanar Maps , 2014, 1405.1971.
[22] Invariance principles for Galton-Watson trees conditioned on the number of leaves , 2011, 1110.2163.
[23] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[24] P. Ney,et al. Functions of probability measures , 1973 .
[25] H. Kesten. Subdiffusive behavior of random walk on a random cluster , 1986 .
[26] Benedikt Stufler. Scaling limits of random outerplanar maps with independent link-weights , 2015 .
[27] David Aldous,et al. The Continuum Random Tree III , 1991 .
[28] Thomas Duquesne. A limit theorem for the contour process of condidtioned Galton--Watson trees , 2003 .
[29] I. Kortchemski. A Simple Proof of Duquesne’s Theorem on Contour Processes of Conditioned Galton–Watson Trees , 2011, 1109.4138.
[30] B'en'edicte Haas,et al. Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees , 2010, 1003.3632.
[31] Grégory Miermont,et al. Scaling limits of random planar maps with large faces , 2011 .
[32] Svante Janson,et al. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.
[33] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[34] Nicolas Curien,et al. The CRT is the scaling limit of random dissections , 2013, Random Struct. Algorithms.
[35] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[36] Douglas Rizzolo. Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set , 2011, 1105.2528.
[37] R. Wolpert. Lévy Processes , 2000 .
[38] Cyril Marzouk,et al. Scaling limits of random bipartite planar maps with a prescribed degree sequence , 2016, Random Struct. Algorithms.