Geometry of large Boltzmann outerplanar maps

We study the phase diagram of random outerplanar maps sampled according to non-negative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov-Hausdorff sense towards the $\alpha$-stable looptree introduced by Curien and Kortchemski (2014), with the parameter $\alpha$ depending on the specific weight-sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.

[1]  Marc Noy,et al.  Counting Outerplanar Maps , 2017, Electron. J. Comb..

[2]  I. Kortchemski,et al.  Random stable looptrees , 2013, 1304.1044.

[3]  Random trees with superexponential branching weights , 2011, 1104.2810.

[4]  I. Kortchemski Limit theorems for conditioned non-generic Galton-Watson trees , 2012, 1205.3145.

[5]  T. F. Móri On random trees , 2002 .

[6]  T. Jonsson,et al.  Condensation in Nongeneric Trees , 2010, 1009.1826.

[7]  Thomas Duquesne,et al.  Random Trees, Levy Processes and Spatial Branching Processes , 2002 .

[8]  Nicolas Bonichon,et al.  Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding, and Generation , 2003, WG.

[9]  Sigurdur Orn Stef'ansson,et al.  Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.

[10]  I. Kortchemski,et al.  Percolation on random triangulations and stable looptrees , 2013, 1307.6818.

[11]  Benedikt Stufler,et al.  Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.

[12]  Richard Ehrenborg,et al.  Schröder Parenthesizations and Chordates , 1994, J. Comb. Theory, Ser. A.

[13]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[14]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.

[15]  Timothy Budd,et al.  The Peeling Process of Infinite Boltzmann Planar Maps , 2015, Electron. J. Comb..

[16]  L. Richier Limits of the boundary of random planar maps , 2017, 1704.01950.

[17]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[18]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[19]  Igor Kortchemski,et al.  Sub-exponential tail bounds for conditioned stable Bienaymé–Galton–Watson trees , 2015, 1504.04358.

[20]  T. Budd,et al.  Geometry of infinite planar maps with high degrees , 2016, 1602.01328.

[21]  Alessandra Caraceni The Scaling Limit of Random Outerplanar Maps , 2014, 1405.1971.

[22]  Invariance principles for Galton-Watson trees conditioned on the number of leaves , 2011, 1110.2163.

[23]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[24]  P. Ney,et al.  Functions of probability measures , 1973 .

[25]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[26]  Benedikt Stufler Scaling limits of random outerplanar maps with independent link-weights , 2015 .

[27]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[28]  Thomas Duquesne A limit theorem for the contour process of condidtioned Galton--Watson trees , 2003 .

[29]  I. Kortchemski A Simple Proof of Duquesne’s Theorem on Contour Processes of Conditioned Galton–Watson Trees , 2011, 1109.4138.

[30]  B'en'edicte Haas,et al.  Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees , 2010, 1003.3632.

[31]  Grégory Miermont,et al.  Scaling limits of random planar maps with large faces , 2011 .

[32]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[33]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[34]  Nicolas Curien,et al.  The CRT is the scaling limit of random dissections , 2013, Random Struct. Algorithms.

[35]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[36]  Douglas Rizzolo Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set , 2011, 1105.2528.

[37]  R. Wolpert Lévy Processes , 2000 .

[38]  Cyril Marzouk,et al.  Scaling limits of random bipartite planar maps with a prescribed degree sequence , 2016, Random Struct. Algorithms.