Testing Mars-inspired operational strategies for semi-autonomous rovers on the Moon: The GeoHeuristic Operational Strategies Test in New Mexico

Background We tested the science operational strategy used for the Mars Exploration Rover (MER) mission on Mars to determine its suitability for conducting remote geology on the Moon by conducting a field test at Cerro de Santa Clara, New Mexico. This region contains volcanic and sedimentary products from a variety of provenances, mimicking the variety that might be found at a lunar site such as South Pole-Aitken Basin. Method At each site a Science Team broke down observational “days” into a sequence of observations of features and targets of interest. The number, timing, and sequence of observations was chosen to mimic those used by the MERs when traversing. Images simulating high-resolution stereo and hand lens-scale images were taken using a professional SLR digital camera; multispectral and XRD data were acquired from samples to mimic the availability of geochemical data. A separate Tiger Team followed the Science Team and examined each site using traditional terrestrial field methods, facilitating comparison between what was revealed by human versus rover-inspired methods. Lessons Learned We conclude from this field test that MER-inspired methodology is not conducive to utilizing all acquired data in a timely manner for the case of any lunar architecture that involves the acquisition of rover data in near real-time. We additionally conclude that a methodology similar to that used for MER can be adapted for use on the Moon if mission goals are focused on reconnaissance. If the goal is to locate and identify a specific feature or material, such as water ice, a different methodology will likely be needed.

[1]  Terrence Fong,et al.  ANALOG LUNAR ROBOTIC SITE SURVEY AT HAUGHTON CRATER , 2007 .

[2]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[3]  M. Weideman,et al.  European Space Agency , 2019, The Grants Register 2022.

[4]  W. Boynton,et al.  Volatile compounds released during lunar lava fountaining , 1976 .

[5]  P. A. Baedecker,et al.  Volatile and siderophilic trace elements in the soils and rocks of Taurus-Littrow , 1974 .

[6]  Steve Chien,et al.  Automated Targeting for the MER Rovers , 2009, 2009 Third IEEE International Conference on Space Mission Challenges for Information Technology.

[7]  J. Head,et al.  Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts , 1992 .

[8]  J. J. Gillis,et al.  Geology of the Smythii and Marginis region of the Moon: Using integrated remotely sensed data , 2000 .

[9]  J. Aubele,et al.  Volcanic Features of New Mexico Analogous to Volcanic Features on Mars , 2007 .

[10]  J. Head,et al.  Geology of mare deposits in South Pole‐Aitken basin as seen by Clementine UV/VIS data , 1999 .

[11]  Mark A. Ruzon,et al.  Autonomous image analyses during the 1999 Marsokhod rover field test , 2001 .

[12]  J. Head,et al.  Characteristics of lunar mare deposits in Smythii and Marginis basins: Implications for magma transport mechanisms , 1998 .

[13]  Michael L. Gernhardt,et al.  Performance evaluation of underwater platforms in the context of space exploration , 2010 .

[14]  J. Whitford-Stark A preliminary analysis of lunar extra-mare basalts: Distribution, compositions, ages, volumes, and eruption styles , 1982 .

[15]  G. Mehall,et al.  Miniature Thermal Emission Spectrometer on the Mars Exploration Rovers , 2007 .

[16]  R. A. Yingst,et al.  Observations of a potential Mars analog at the microscale using rover‐inspired methods: A 10‐sol observation of Fort Rock tuff ring , 2009 .

[17]  John F. Mustard,et al.  On lateral mixing efficiency of lunar regolith , 2005 .

[18]  David E. Smith,et al.  MULTIPLE-TARGET SINGLE CYCLE INSTRUMENT PLACEMENT , 2005 .

[19]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[20]  J. Head,et al.  Volumes of lunar lava ponds in South Pole‐Aitken and Orientale Basins: Implications for eruption conditions, transport mechanisms, and magma source regions , 1997 .

[21]  Carol R. Stoker,et al.  Telepresence control of mobile robots - Kilauea Marsokhod experiment , 1996 .

[22]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[23]  A. W. Laughlin,et al.  Sr isotopic disequilibrium in lherzolites from the Puerco necks, New Mexico , 1972 .

[24]  P. Spudis,et al.  Composition of orientale basin deposits and implications for the lunar basin‐forming process , 1984 .

[25]  Carle M. Pieters,et al.  Surviving the heavy bombardment: Ancient material at the surface of South Pole-Aitken Basin , 2004 .

[26]  Lisa R. Gaddis,et al.  Rock types of South Pole‐Aitken basin and extent of basaltic volcanism , 2001 .

[27]  R. Phillips,et al.  Lunar Multiring Basins and the Cratering Process , 1999 .

[28]  Sathya Hanagud,et al.  Drilling Automation Tests At A Lunar/Mars Analog Site , 2006 .

[29]  Carol R. Stoker,et al.  The search for life on Mars: The role of rovers , 1998 .

[30]  Mark Woods,et al.  Autonomous science for an ExoMars Rover–like mission , 2009, J. Field Robotics.

[31]  V. I. Moroz,et al.  Mars Together 2001: An International Mission of Exploration , 1996 .

[32]  Yasuharu Kunii,et al.  Command data compensation for real-time tele-driving system on lunar rover: Micro-5 , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[33]  Raymond E. Arvidson,et al.  FIDO prototype Mars rover field trials, Black Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field science , 2002 .

[34]  信之 小林,et al.  Robotics and automation in space , 1995 .

[35]  Maria Bualat,et al.  Flexible Rover Architecture for Science Instrument Integration and Testing , 2006 .

[36]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[37]  Mark Perry,et al.  Artificial Intelligence, Robotics and Automation in Space , 1999 .

[38]  Martha S. Gilmore,et al.  Remotely sensed geology from lander‐based to orbital perspectives: Results of FIDO rover May 2000 field tests , 2002 .

[39]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[40]  J. Whitford-Stark,et al.  Charting the southern seas - The evolution of the lunar Mare Australe , 1979 .

[41]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[42]  Paul D. Spudis,et al.  Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry , 1994, Science.

[43]  Lunar Enabling exploration : the Lunar outpost and beyond , 2007 .

[44]  L. Calk,et al.  Mafic and ultramafic xenoliths from volcanic rocks of the western United States , 1985 .

[45]  Paul C. H. Lee,et al.  Haughton-Mars Project: 10 Years of Science Operations and Exploration Systems Development at a Moon/Mars Analog Site on Devon Island, High Arctic , 2007 .

[46]  Terrence Fong,et al.  Robotic recon for human exploration: Method, assessment, and lessons learned , 2011 .

[47]  G. J. Taylor,et al.  Development of the Moon , 2006 .

[48]  M. Lemmon,et al.  DIRTCam in the desert: The Silver Lake field test of the Robotic Arm Camera , 2001 .

[49]  Carol R. Stoker,et al.  Two dogs, new tricks: A two‐rover mission simulation using K9 and FIDO at Black Rock Summit, Nevada , 2002 .

[50]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[51]  Carle M. Pieters,et al.  Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle , 1997 .

[52]  David W. Beaty,et al.  The Things We Most Need to Learn at the Moon to Support the Subsequent Human Exploration of Mars , 2007 .

[53]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[54]  C. Wood,et al.  Lunar rilles and Hawaiian volcanic features: Possible analogues , 1972 .

[55]  K. Herkenhoff,et al.  The Mars Hand Lens Imager (MAHLI) for the 209 Mars Science Laboratory , 2005 .

[56]  Nathalie A. Cabrol,et al.  Analysis of science team activities during the 1999 Marsokhod Rover Field Experiment: Implications for automated planetary surface exploration , 2001 .

[57]  J. Selverstone,et al.  Pyroxenite xenoliths from the Rio Puerco volcanic field, New Mexico: Melt metasomatism at the margin of the Rio Grande rift , 2006 .

[58]  John F. Mustard,et al.  Highland contamination in lunar mare soils: Improved mapping with multiple end-member spectral mixture analysis (MESMA) , 2003 .

[59]  Dean Eppler,et al.  Comparing Apollo and Mars Exploration Rover (MER)/phoenix operations paradigms for human exploration during NASA Desert-RATS science operations , 2013 .

[60]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[61]  Rebecca Castano,et al.  Generation and performance of automated jarosite mineral detectors for visible/near-infrared spectrometers at Mars , 2008 .

[62]  Kip V. Hodges,et al.  Science Support Room Operations During Desert RATS 2009 , 2009 .

[63]  Tara A. Estlin,et al.  Oasis: Onboard autonomous science investigation system for opportunistic rover science , 2007, J. Field Robotics.

[64]  M. Maimone,et al.  Atacama Desert Trek: A Planetary Analog Field Experiment , 1997 .

[65]  David P. Miller,et al.  Visual Aids for Lunar Rover Tele-Operation , 2005 .

[66]  Jeffrey R. Johnson,et al.  The 1999 Marsokhod rover mission simulation at Silver Lake, California: Mission overview, data sets, and summary of results , 2001 .

[67]  J. Delano Pristine lunar glasses: Criteria, data, and implications , 1986 .

[68]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[69]  A. McEwen,et al.  Compositional variations on the Moon: Recalibration of Galileo solid-state imaging data for the Orientale region and farside , 1995 .

[70]  Terrence Fong,et al.  Field Testing of Utility Robots for Lunar Surface Operations , 2008 .