Exceptional Families of Elements for Continuous Functions: Some Applications to Complementarity Theory

Using the topological degree and the concept of exceptional family of elements for a continuous function, we prove a very general existence theorem for the nonlinear complementarity problem. This result is an alternative theorem. A generalization of Karamardian's condition and the asymptotic monotonicity are also introduced. Several applications of the main results are presented.

[1]  J. Tolle,et al.  The Nonlinear Complementarity Problem: Existence and Determination of Solutions , 1977 .

[2]  R. Sznajder,et al.  Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems , 1995 .

[3]  Jorge J. Moré,et al.  Classes of functions and feasibility conditions in nonlinear complementarity problems , 1974, Math. Program..

[4]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[5]  Aniekan Ebiefung,et al.  Nonlinear mappings associated with the generalized linear complementarity problem , 1995, Math. Program..

[6]  G. Dantzig,et al.  A generalization of the linear complementarity problem , 1970 .

[7]  Tony E. Smith,et al.  A solution condition for complementarity problems: with an application to spatial price equilibrium , 1984 .

[8]  G. Isac On An Altman Type Fixed Point Theorem on Convex Cones , 1995 .

[9]  J. J. Moré,et al.  On P- and S-functions and related classes of n-dimensional nonlinear mappings , 1973 .

[10]  Vyacheslav Kalashnikov,et al.  Exceptional Families, Topological Degree and Complementarity Problems , 1997, J. Glob. Optim..

[11]  George Isac,et al.  Functions Without Exceptional Family of Elements and Complementarity Problems , 1998 .

[12]  R. Sridhar,et al.  The generalized linear complementarity problem revisited , 1996, Math. Program..

[13]  Houduo Qi,et al.  Exceptional Families and Existence Theorems for Variational Inequality Problems , 1999 .

[14]  福田 弘之 A fixed point theorem in Hilbert space , 1982 .

[15]  L. Vandenberghe,et al.  The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[16]  S. Karamardian Generalized complementarity problem , 1970 .

[17]  J. J. Moré Coercivity Conditions in Nonlinear Complementarity Problems , 1974 .

[18]  Michael M. Kostreva,et al.  The generalized Leontief input-output model and its application to the choice of new technology , 1993, Ann. Oper. Res..

[19]  G. Isac Complementarity Problems , 1992 .

[20]  George Isac,et al.  Fixed Points, Coincidence Equations on Cones and Complementarity , 2000 .

[21]  Yun-Bin Zhao,et al.  Exceptional families and finite-dimensional variational inequalities over polyhedral convex sets , 1997 .

[22]  G. Isac,et al.  The generalized order complementarity problem , 1991 .