Semilinear Program Feasibility

We study logical techniques for deciding the computational complexity of infinite-domain constraint satisfaction problems (CSPs). For the fundamental algebraic structure $\Gamma=(\mathbb R; L_1,L_2,\dots)$ where $\mathbb R$ are the real numbers and L 1 ,L 2 ,... is an enumeration of all linear relations with rational coefficients, we prove that a semilinear relation R (i.e., a relation that is first-order definable with linear inequalities) either has a quantifier-free Horn definition in Γ or the CSP for $(\mathbb R; R,L_1,L_2,\dots)$ is NP-hard. The result implies a complexity dichotomy for all constraint languages that are first-order expansions of Γ : the corresponding CSPs are either in P or are NP-complete depending on the choice of allowed relations. We apply this result to two concrete examples (generalised linear programming and metric temporal reasoning) and obtain full complexity dichotomies in both cases.

[1]  E. Steinitz Algebraische Theorie der Körper. , 1910 .

[2]  S. Banach Sur les fonctionnelles linéaires , 1929 .

[3]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[4]  Richard M. Karp,et al.  Complexity of Computation , 1974 .

[5]  Jeanne Ferrante,et al.  A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[8]  H. Hahn Über lineare Gleichungssysteme in linearen Räumen , 1995 .

[9]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[10]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[11]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[12]  Christer Bäckström,et al.  A Unifying Approach to Temporal Constraint Reasoning , 1998, Artif. Intell..

[13]  Peter Jeavons,et al.  Building tractable disjunctive constraints , 2000, J. ACM.

[14]  Manolis Koubarakis,et al.  Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning , 2001, Theor. Comput. Sci..

[15]  D. Marker Model theory : an introduction , 2002 .

[16]  Peter Jonsson,et al.  Computational Complexity of Temporal Constraint Problems , 2005, Handbook of Temporal Reasoning in Artificial Intelligence.

[17]  Dov M. Gabbay,et al.  Handbook of Temporal Reasoning in Artificial Intelligence , 2005, Handbook of Temporal Reasoning in Artificial Intelligence.

[18]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[19]  The complexity of temporal constraint satisfaction problems , 2008, STOC.

[20]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[21]  Manuel Bodirsky Constraint Satisfaction Problems with Infinite Templates , 2008, Complexity of Constraints.