Quantum trajectories for the realistic measurement of a solid-state charge qubit
暂无分享,去创建一个
Neil P. Oxtoby | H. M. Wiseman | P. Warszawski | N. Oxtoby | H. Sun | H. Wiseman | R. E. S. Polkinghorne | P. Warszawski | R. Polkinghorne | He-Bi Sun
[1] Nonideal quantum detectors in Bayesian formalism , 2002, cond-mat/0211647.
[2] Wiseman,et al. Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.
[3] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[4] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.
[5] Stefano Mancini,et al. Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .
[6] H. Mabuchi,et al. Quantum trajectories for realistic detection , 2002 .
[7] R. Schoelkopf,et al. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.
[8] Henry I. Smith,et al. Single-electron transistor as a charge sensor for semiconductor applications , 1997 .
[9] H. M. Wiseman. Quantum trajectories and quantum measurement theory , 1996 .
[10] A. Korotkov. Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.
[11] Milburn,et al. Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.
[12] G. J. Milburn,et al. Quantum error correction for continuously detected errors , 2003 .
[13] John K. Stockton,et al. Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.
[14] Vladimir B. Braginsky,et al. Quantum Measurement , 1992 .
[15] Yoshiro Hirayama,et al. Charge noise analysis of an AlGaAs/GaAs quantum dot using transmission-type radio-frequency single-electron transistor technique , 2000 .
[16] A. Korotkov. Continuous quantum measurement of a double dot , 1999, cond-mat/9909039.
[17] H M Wiseman,et al. Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.
[18] Gerard J. Milburn,et al. Practical scheme for error control using feedback , 2004 .
[19] Michel H. Devoret,et al. Amplifying quantum signals with the single-electron transistor , 2000, Nature.
[20] Alexander Shnirman,et al. Quantum measurements performed with a single-electron transistor , 1998, cond-mat/9801125.
[21] Eli Yablonovitch,et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.
[22] Gerard J. Milburn,et al. Classical and quantum noise in electronic systems , 1998 .
[23] Alexander N. Korotkov,et al. Spectrum of qubit oscillations from generalized Bloch equations , 2003 .
[24] Kurt Jacobs,et al. Quantum error correction for continuously detected errors with any number of error channels per qubit , 2004 .
[25] D Mozyrsky,et al. Relaxation and the Zeno effect in qubit measurements. , 2003, Physical review letters.
[26] H. M. Wiseman,et al. Quantum trajectories for realistic photodetection: II. Application and analysis. , 2003 .
[27] Hideo Mabuchi,et al. Quantum feedback control and classical control theory , 1999, quant-ph/9912107.
[28] Dolan,et al. Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.
[29] Konstantin K. Likharev,et al. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .
[30] Nathan,et al. Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach , 2000, cond-mat/0006333.
[31] K. Jacobs,et al. FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .
[32] Milburn,et al. Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[33] G. Milburn,et al. Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement , 2001, cond-mat/0103005.
[34] H. M. Wiseman,et al. Quantum measurement of coherent tunneling between quantum dots , 2001 .
[35] Correlated quantum measurement of a solid-state qubit , 2000, cond-mat/0008003.
[36] Output spectrum of a detector measuring quantum oscillations , 2000, cond-mat/0003225.
[37] Ritchie,et al. Measurements of Coulomb blockade with a noninvasive voltage probe. , 1993, Physical review letters.
[38] S. A. Gurvitz. Measurements with a noninvasive detector and dephasing mechanism , 1997 .
[39] OBSERVATION OF QUANTUM FLUCTUATIONS OF CHARGE ON A QUANTUM DOT , 1998, cond-mat/9803373.
[40] H. Carmichael. An open systems approach to quantum optics , 1993 .
[41] P. Warszawski,et al. Quantum trajectories for realistic photodetection: I. General formalism , 2002 .
[42] D. DiVincenzo,et al. Quantum computation with quantum dots , 1997, cond-mat/9701055.
[43] Marc Kastner,et al. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .
[44] Alexander N. Korotkov,et al. Quantum feedback control of a solid-state qubit , 2002 .
[45] D. D. Awschalom,et al. Quantum information processing using quantum dot spins and cavity QED , 1999 .
[46] N. Oxtoby,et al. Non-ideal monitoring of a qubit state using a quantum tunnelling device , 2003 .