Quantum trajectories for the realistic measurement of a solid-state charge qubit

We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.

[1]  Nonideal quantum detectors in Bayesian formalism , 2002, cond-mat/0211647.

[2]  Wiseman,et al.  Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.

[3]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[4]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[5]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .

[6]  H. Mabuchi,et al.  Quantum trajectories for realistic detection , 2002 .

[7]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[8]  Henry I. Smith,et al.  Single-electron transistor as a charge sensor for semiconductor applications , 1997 .

[9]  H. M. Wiseman Quantum trajectories and quantum measurement theory , 1996 .

[10]  A. Korotkov Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.

[11]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[12]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[13]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[14]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[15]  Yoshiro Hirayama,et al.  Charge noise analysis of an AlGaAs/GaAs quantum dot using transmission-type radio-frequency single-electron transistor technique , 2000 .

[16]  A. Korotkov Continuous quantum measurement of a double dot , 1999, cond-mat/9909039.

[17]  H M Wiseman,et al.  Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.

[18]  Gerard J. Milburn,et al.  Practical scheme for error control using feedback , 2004 .

[19]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[20]  Alexander Shnirman,et al.  Quantum measurements performed with a single-electron transistor , 1998, cond-mat/9801125.

[21]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[22]  Gerard J. Milburn,et al.  Classical and quantum noise in electronic systems , 1998 .

[23]  Alexander N. Korotkov,et al.  Spectrum of qubit oscillations from generalized Bloch equations , 2003 .

[24]  Kurt Jacobs,et al.  Quantum error correction for continuously detected errors with any number of error channels per qubit , 2004 .

[25]  D Mozyrsky,et al.  Relaxation and the Zeno effect in qubit measurements. , 2003, Physical review letters.

[26]  H. M. Wiseman,et al.  Quantum trajectories for realistic photodetection: II. Application and analysis. , 2003 .

[27]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[28]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[29]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[30]  Nathan,et al.  Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach , 2000, cond-mat/0006333.

[31]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[32]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[33]  G. Milburn,et al.  Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement , 2001, cond-mat/0103005.

[34]  H. M. Wiseman,et al.  Quantum measurement of coherent tunneling between quantum dots , 2001 .

[35]  Correlated quantum measurement of a solid-state qubit , 2000, cond-mat/0008003.

[36]  Output spectrum of a detector measuring quantum oscillations , 2000, cond-mat/0003225.

[37]  Ritchie,et al.  Measurements of Coulomb blockade with a noninvasive voltage probe. , 1993, Physical review letters.

[38]  S. A. Gurvitz Measurements with a noninvasive detector and dephasing mechanism , 1997 .

[39]  OBSERVATION OF QUANTUM FLUCTUATIONS OF CHARGE ON A QUANTUM DOT , 1998, cond-mat/9803373.

[40]  H. Carmichael An open systems approach to quantum optics , 1993 .

[41]  P. Warszawski,et al.  Quantum trajectories for realistic photodetection: I. General formalism , 2002 .

[42]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[43]  Marc Kastner,et al.  Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .

[44]  Alexander N. Korotkov,et al.  Quantum feedback control of a solid-state qubit , 2002 .

[45]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[46]  N. Oxtoby,et al.  Non-ideal monitoring of a qubit state using a quantum tunnelling device , 2003 .