Magnetostriction of a Fe83Ga17 single crystal slightly doped with Tb

Abstract A novel strategy of sub-rapid directional solidification is developed for preparing doped FeGa single crystals. Crystals of nominal composition Fe83Ga17Tbx (x = 0, 0.05) have been grown with [100] preferred orientation at a high growth rate of 3000 mm/h. Using this method, trace amounts of normally-insoluble Tb can be incorporated into the A2 Fe83Ga17 matrix. A large magnetostriction (λ100) of 310 ppm is achieved in the [100] oriented Fe83Ga17Tb0.05 single crystal, ~ 50% higher than that of a similar undoped crystal.

[1]  T. Lograsso,et al.  Magnetostriction of ternary Fe–Ga–X alloys (X=Ni,Mo,Sn,Al) , 2002 .

[2]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[3]  E. Summers,et al.  Magnetostriction of binary and ternary Fe–Ga alloys , 2007 .

[4]  Guangru Zhang,et al.  Influences of rare earth element Ce-doping and melt-spinning on microstructure and magnetostriction of Fe83Ga17 alloy , 2015 .

[5]  S. Guruswamy,et al.  Influence of Be and Al on the magnetostrictive behavior of FeGa alloys , 2005 .

[6]  R. S. Turtelli,et al.  Magnetostriction and structural characterization of Fe-Ga-X (X = Co, Ni, Al) mold-cast bulk. , 2005 .

[7]  Marilyn Wun-Fogle,et al.  Magnetostriction of ternary Fe–Ga–X (X=C,V,Cr,Mn,Co,Rh) alloys , 2007 .

[8]  Chengbao Jiang,et al.  Tb solid solution and enhanced magnetostriction in Fe83Ga17 alloys , 2015 .

[9]  Huibin Xu,et al.  Giant magnetostriction in Tb-doped Fe83Ga17 melt-spun ribbons , 2013, 1307.2385.

[10]  Alison B. Flatau,et al.  Characterization and energy-based model of the magnetomechanical behavior of polycrystalline iron–gallium alloys , 2007 .

[11]  T. Lograsso,et al.  Magnetostriction and elasticity of body centered cubic Fe100−xBex alloys , 2004 .

[12]  Tobias Lindström,et al.  Magnesium diboride nanobridges fabricated by electron-beam lithography , 2005 .

[13]  S. Na,et al.  Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X=B,C,Mn,Mo,Nb,NbC) alloys , 2008 .

[14]  H. D. Chopra,et al.  Non-Joulian magnetostriction , 2015, Nature.

[15]  S. Kulkarni,et al.  Development of nanostructured, stress-free Co-rich CoPtP films for magnetic microelectromechanical system applications , 2007 .

[16]  J. Nichols,et al.  Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films , 2013, 1302.0918.

[17]  Marilyn Wun-Fogle,et al.  Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys , 2000 .

[18]  Guangru Zhang,et al.  Giant enhancement in the magnetostrictive effect of FeGa alloys doped with low levels of terbium , 2013 .

[19]  Chengbao Jiang,et al.  Improved magnetostriction of Dy-doped Fe83Ga17 melt-spun ribbons , 2014 .

[20]  Guangru Zhang,et al.  Thermally driven large magnetoresistance and magnetostriction in multifunctional magnetic FeGa–Tb alloys , 2014 .

[21]  Yang Zhao,et al.  Steel stress monitoring sensor based on elasto-magnetic effect and using magneto-electric laminated composite , 2012 .

[22]  Jiheng Li,et al.  Ductility, texture and large magnetostriction of Fe–Ga-based sheets , 2010 .

[23]  T. Lograsso,et al.  Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys , 2012 .

[24]  T. Ono,et al.  Electrochemical synthesis and properties of CoO2, the x=0 phase of the AxCoO2 systems (A=Li,Na) , 2008 .