Perceptual uniform descriptor and Ranking on manifold: A bridge between image representation and ranking for image retrieval

Incompatibility of image descriptor and ranking is always neglected in image retrieval. In this paper, manifold learning and Gestalt psychology theory are involved to solve the incompatibility problem. A new holistic descriptor called Perceptual Uniform Descriptor (PUD) based on Gestalt psychology is proposed, which combines color and gradient direction to imitate the human visual uniformity. PUD features in the same class images distributes on one manifold in most cases because PUD improves the visual uniformity of the traditional descriptors. Thus, we use manifold ranking and PUD to realize image retrieval. Experiments were carried out on five benchmark data sets, and the proposed method can greatly improve the accuracy of image retrieval. Our experimental results in the Ukbench and Corel-1K datasets demonstrated that N-S score reached to 3.58 (HSV 3.4) and mAP to 81.77% (ODBTC 77.9%) respectively by utilizing PUD which has only 280 dimension. The results are higher than other holistic image descriptors (even some local ones) and state-of-the-arts retrieval methods.

[1]  Patricia E. Blosser,et al.  Principles of gestalt psychology and their application to teaching junior high school science , 1973 .

[2]  Haibing Wang,et al.  Image retrieval using spatiograms of colors quantized by Gaussian Mixture Models , 2016, Neurocomputing.

[3]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[4]  James Ze Wang,et al.  Content-based image retrieval: approaches and trends of the new age , 2005, MIR '05.

[5]  Remco C. Veltkamp,et al.  A Survey of Content-Based Image Retrieval Systems , 2002 .

[6]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  A. Murat Tekalp,et al.  Robust color histogram descriptors for video segment retrieval and identification , 2002, IEEE Trans. Image Process..

[8]  Qi Tian,et al.  Packing and Padding: Coupled Multi-index for Accurate Image Retrieval , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Fa-Xin Yu,et al.  Colour image retrieval using pattern co-occurrence matrices based on BTC and VQ , 2011 .

[10]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[11]  Weisi Lin,et al.  Integrating visual saliency and consistency for re-ranking image search results , 2011, 2010 IEEE International Conference on Image Processing.

[12]  K. Hemachandran,et al.  Performance analysis of Color Spaces in Image Retrieval , 2011 .

[13]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[14]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Takumi Kobayashi,et al.  BFO Meets HOG: Feature Extraction Based on Histograms of Oriented p.d.f. Gradients for Image Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Lei Zhang,et al.  Image retrieval based on micro-structure descriptor , 2011, Pattern Recognit..

[17]  Jing-Yu Yang,et al.  Content-based image retrieval using computational visual attention model , 2015, Pattern Recognit..

[18]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[19]  Chun Chen,et al.  Efficient manifold ranking for image retrieval , 2011, SIGIR.

[20]  Bernhard Schölkopf,et al.  Ranking on Data Manifolds , 2003, NIPS.

[21]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[22]  B. N. Chatterji,et al.  Comparison of similarity metrics for texture image retrieval , 2003, TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region.

[23]  Vijay V. Raghavan,et al.  Content-Based Image Retrieval Systems - Guest Editors' Introduction , 1995, Computer.

[24]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[25]  Jingrui He,et al.  Manifold-ranking based image retrieval , 2004, MULTIMEDIA '04.

[26]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[27]  Cordelia Schmid,et al.  Evaluation of GIST descriptors for web-scale image search , 2009, CIVR '09.

[28]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[29]  Dima Damen,et al.  Recognizing linked events: Searching the space of feasible explanations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[32]  Matthijs Douze,et al.  Bag-of-colors for improved image search , 2011, ACM Multimedia.

[33]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[34]  Jun Wu,et al.  Global Correlation Descriptor: A novel image representation for image retrieval , 2015, J. Vis. Commun. Image Represent..

[35]  Bo Jin,et al.  Maximal Similarity Embedding , 2013, Neurocomputing.

[36]  Ashish Mohan Yadav,et al.  A Survey on Content Based Image Retrieval Systems , 2014 .

[37]  Xuelong Li,et al.  Color to Gray: Visual Cue Preservation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[39]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[40]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  Yun Q. Shi,et al.  A Novel Method for Detecting Image Sharpening Based on Local Binary Pattern , 2013, IWDW.

[42]  Jing-Ming Guo,et al.  Image indexing using the color and bit pattern feature fusion , 2013, J. Vis. Commun. Image Represent..

[43]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[45]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[46]  Matti Pietikäinen,et al.  Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2000, ECCV.

[47]  PoggioTomaso,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007 .

[48]  B. Julesz,et al.  Texton gradients: The texton theory revisited , 2004, Biological Cybernetics.

[49]  Victor S. Lempitsky,et al.  Neural Codes for Image Retrieval , 2014, ECCV.

[50]  Hong Qiao,et al.  Introducing Memory and Association Mechanism Into a Biologically Inspired Visual Model , 2014, IEEE Transactions on Cybernetics.

[51]  Rong-Tai Chen,et al.  A smart content-based image retrieval system based on color and texture feature , 2009, Image Vis. Comput..

[52]  David Stutz,et al.  Neural Codes for Image Retrieval , 2015 .

[53]  Aman Pal,et al.  Fusion framework for effective color image retrieval , 2014, J. Vis. Commun. Image Represent..

[54]  Tetsuya Takiguchi,et al.  Content-based Image Retrieval Using Rotation-invariant Histograms of Oriented Gradients , 2015, ICMR.

[55]  Jing-Yu Yang,et al.  Content-based image retrieval using color difference histogram , 2013, Pattern Recognit..

[56]  Konstantinos N. Plataniotis,et al.  Distance measures for color image retrieval , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[57]  Moncef Gabbouj,et al.  Perceptual color descriptor based on spatial distribution: A top-down approach , 2010, Image Vis. Comput..

[58]  Lei Zhang,et al.  A multi-manifold discriminant analysis method for image feature extraction , 2011, Pattern Recognit..