Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials.

[1]  M. Dove,et al.  Compressibility, kinetics, and phase transition in pressurized amorphous silica , 2003 .

[2]  Juan L. Vivero-Escoto,et al.  Silica-based nanoprobes for biomedical imaging and theranostic applications. , 2012, Chemical Society reviews.

[3]  Arash A. Mostofi,et al.  A converse approach to the calculation of NMR shielding tensors , 2007, 0709.4429.

[4]  J. Zupan,et al.  Neural Networks in Chemistry , 1993 .

[5]  S. Vasudevan,et al.  Encapsulation of cobalt phthalocyanine in zeolite-y: evidence for nonplanar geometry. , 2003, Inorganic chemistry.

[6]  Steuernagel,et al.  Z Filtering in MQMAS NMR , 1996, Journal of magnetic resonance. Series A.

[7]  M. Menziani,et al.  Calcium environment in silicate and aluminosilicate glasses probed by ⁴³Ca MQMAS NMR experiments and MD-GIPAW calculations. , 2015, Solid state nuclear magnetic resonance.

[8]  K. Mueller,et al.  Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation , 1989, Nature.

[9]  Louie,et al.  Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids. , 1996, Physical review letters.

[10]  Christy L Haynes,et al.  Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. , 2010, Journal of the American Chemical Society.

[11]  Heinz Schulz,et al.  Structure determination of α-quartz up to 68 x 108 Pa , 1979 .

[12]  J. Delaye,et al.  Contribution of first‐principles calculations to multinuclear NMR analysis of borosilicate glasses , 2010, Magnetic resonance in chemistry : MRC.

[13]  Michele Parrinello,et al.  Heterogeneous Crystallization of the Phase Change Material GeTe via Atomistic Simulations , 2015 .

[14]  Alfonso Pedone,et al.  Multinuclear NMR of CaSiO(3) glass: simulation from first-principles. , 2010, Physical chemistry chemical physics : PCCP.

[15]  Rustam Z. Khaliullin,et al.  Microscopic origins of the anomalous melting behavior of sodium under high pressure. , 2011, Physical review letters.

[16]  A. Bax,et al.  Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology , 2007, Journal of biomolecular NMR.

[17]  M. Menziani,et al.  Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses , 2014 .

[18]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  Young Joo Lee,et al.  High-resolution solid-state NMR studies of poly(vinyl phosphonic acid) proton-conducting polymer: molecular structure and proton dynamics. , 2007, The journal of physical chemistry. B.

[21]  Rustam Z. Khaliullin,et al.  Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface , 2010 .

[22]  G. Miehe,et al.  Crystal structure of moganite; a new structure type for silica , 1992 .

[23]  V. Bakhmutov Strategy in NMR Studies of Amorphous Porous Paramagnetic Materials , 2011 .

[24]  S. Ispas,et al.  Insight into sodium silicate glass structural organization by multinuclear NMR combined with first-principles calculations , 2011 .

[25]  Germany,et al.  Neural network interatomic potential for the phase change material GeTe , 2012, 1201.2026.

[26]  Hyesung Jeon,et al.  Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. , 2011, ACS nano.

[27]  K. Keil,et al.  Alteration of basalt glasses: implications for modelling the long-term stability of nuclear waste glasses , 1985 .

[28]  J. Stebbins NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure , 1991, Nature.

[29]  F. Mauri,et al.  First-Principles Nuclear Magnetic Resonance Structural Analysis of Vitreous Silica , 2009 .

[30]  G. T. Kokotailo,et al.  A high-resolution NMR and synchrotron x-ray powder diffraction study of zeolite ZSM-11 , 1988 .

[31]  F. Mauri,et al.  New insights into oxygen environments generated during phosphate glass alteration: a combined 17O MAS and MQMAS NMR and first principles calculations study. , 2010, Physical chemistry chemical physics : PCCP.

[32]  P. Webley,et al.  Determination of composition range for "molecular trapdoor" effect in chabazite zeolite , 2013 .

[33]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[34]  M. Deschamps,et al.  A combined ⁷⁷Se NMR and molecular dynamics contribution to the structural understanding of the chalcogenide glasses. , 2014, Physical chemistry chemical physics : PCCP.

[35]  O. Terasaki,et al.  Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts , 2009, Nature.

[36]  E. Papirer Adsorption on Silica Surfaces , 2000 .

[37]  J. Behler Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. , 2011, Physical chemistry chemical physics : PCCP.

[38]  Sandro Scandolo,et al.  An ab initio parametrized interatomic force field for silica , 2002 .

[39]  M. Pagliaro Silica-Based Materials For Advanced Chemical Applications , 2009 .

[40]  F. Mauri,et al.  Structural properties of lithium and sodium tetrasilicate glasses: Molecular dynamics simulations versus NMR experimental and first-principles data , 2010 .

[41]  Francesco Mauri,et al.  First-Principles Calculation of 17O, 29Si, and 23Na NMR Spectra of Sodium Silicate Crystals and Glasses , 2004 .

[42]  J. Amoureux,et al.  Triple-quantum MAS-NMR of quadrupolar nuclei. , 1996, Solid state nuclear magnetic resonance.

[43]  F. Mauri,et al.  Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  M. Tuckerman,et al.  First-principles calculation of the 17O NMR parameters of a calcium aluminosilicate glass. , 2005, The journal of physical chemistry. B.

[45]  Ah Chung Tsoi,et al.  Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results , 1998, Neural Networks.

[46]  Jordi Rius,et al.  A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst , 2002, Nature.

[47]  B. Sales,et al.  Lead-Iron Phosphate Glass: A Stable Storage Medium for High-Level Nuclear Waste , 1984, Science.

[48]  Ana Primo,et al.  Zeolites as catalysts in oil refining. , 2014, Chemical Society reviews.

[49]  Gilles Pagès,et al.  Approximations of Functions by a Multilayer Perceptron: a New Approach , 1997, Neural Networks.

[50]  Munindar P. Singh,et al.  Weather Forecasting Model using Artificial Neural Network , 2012 .

[51]  J. Yates,et al.  First-principles investigation of the relation between structural and NMR parameters in vitreous GeO2 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  S. Scandolo,et al.  Mechanical strength and coordination defects in compressed silica glass: Molecular dynamics simulations , 2007 .

[53]  M. Menziani,et al.  Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses , 2013 .

[54]  L. Frydman,et al.  Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids , 1995 .

[55]  J. Behler,et al.  Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe , 2015 .

[56]  Jörg Behler,et al.  Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. , 2014, The journal of physical chemistry. B.

[57]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[58]  Chris J Pickard,et al.  High-pressure phases of silane. , 2006, Physical review letters.

[59]  Jörg Behler,et al.  Next generation interatomic potentials for condensed systems , 2014 .

[60]  Jörg Behler,et al.  Thermal transport in phase-change materials from atomistic simulations , 2012 .

[61]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[62]  Marco Bernasconi,et al.  Breakdown of Stokes–Einstein relation in the supercooled liquid state of phase change materials , 2012, 1207.7269.

[63]  J. Stebbins,et al.  Correlated structural distributions in silica glass , 2004 .

[64]  M. Menziani,et al.  Unambiguous Description of the Oxygen Environment in Multicomponent Aluminosilicate Glasses from 17O Solid State NMR Computational Spectroscopy , 2012 .

[65]  J. Yates,et al.  Structural Composition of First-Neighbor Shells in GeSe2 and GeSe4 Glasses from a First-Principles Analysis of NMR Chemical Shifts , 2011 .

[66]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[67]  Jörg Behler,et al.  Constructing high‐dimensional neural network potentials: A tutorial review , 2015 .

[68]  T. Zoltai,et al.  Refinement of a coesite structure , 1969 .

[69]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[70]  Sumam Mary Idicula,et al.  Artificial Neural Network Model in Prediction of Meteorological Parameters during Premonsoon Thunderstorms , 2013 .

[71]  A. Pines,et al.  Quantification of the disorder in network-modified silicate glasses , 1992, Nature.

[72]  A. Cheetham,et al.  A Synchrotron X-ray Diffraction, Neutron Diffraction, 29Si MAS-NMR, and Computational Study of the Siliceous Form of Zeolite Ferrierite , 1994 .

[73]  Daniel Sebastiani,et al.  A New ab-Initio Approach for NMR Chemical Shifts in Periodic Systems , 2001 .

[74]  W. H. Baur,et al.  Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures , 1971 .

[75]  P. Blaha,et al.  Calculations of NMR chemical shifts with APW-based methods , 2012 .

[76]  M. Menziani,et al.  Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations , 2014 .

[77]  Michele Parrinello,et al.  Nucleation mechanism for the direct graphite-to-diamond phase transition. , 2011, Nature materials.

[78]  L. Frydman,et al.  Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR , 1995 .

[79]  R. Downs,et al.  The pressure behavior of alpha cristobalite , 1994 .

[80]  J. Stebbins,et al.  A 29Si MAS NMR study of sub-Tg amorphization of stishovite at ambient pressure , 1993 .

[81]  John M. Griffin,et al.  First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. , 2012, Chemical reviews.

[82]  G. Armatas,et al.  Mesostructured germanium with cubic pore symmetry , 2006, Nature.

[83]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[84]  S. Risbud,et al.  Transformations in the medium-range order of fused silica under high pressure. , 2003, Physical review letters.

[85]  N. T. Huff,et al.  Factors affecting molecular dynamics simulated vitreous silica structures , 1999 .

[86]  T. Charpentier,et al.  Effect of temperature and thermal history on borosilicate glass structure , 2012 .

[87]  Thibault Charpentier,et al.  The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. , 2011, Solid state nuclear magnetic resonance.

[88]  J. Meiler PROSHIFT: Protein chemical shift prediction using artificial neural networks , 2003, Journal of biomolecular NMR.