Finding All Real Points of a Complex Curve

An algorithm is given to compute the real points of the irreducible one-dimensional complex components of the solution sets of systems of polynomials with real coe‐cients. The algorithm is based on homotopy continuation and the numerical irreducible decomposition. An extended application is made to Gri‐s-Dufiy platforms, a class of Stewart-Gough platform robots. 2000 Mathematics Subject Classiflcation. Primary 65H10; Secondary 65H20, 14Q99.

[1]  Andrew J. Sommese,et al.  An intrinsic homotopy for intersecting algebraic varieties , 2005, J. Complex..

[2]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[3]  Zhonggang Zeng,et al.  Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.

[4]  Zhonggang Zeng,et al.  A Rank-Revealing Method with Updating, Downdating, and Applications , 2005, SIAM J. Matrix Anal. Appl..

[5]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[6]  Andrew J. Sommese,et al.  Homotopies for Intersecting Solution Components of Polynomial Systems , 2004, SIAM J. Numer. Anal..

[7]  Takeo Ojika,et al.  Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations , 1987 .

[8]  M. Raghavan The Stewart platform of general geometry has 40 configurations , 1993 .

[9]  M. Husty An algorithm for solving the direct kinematics of general Stewart-Gough platforms , 1996 .

[10]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[11]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[12]  Charles W. Wampler FORWARD DISPLACEMENT ANALYSIS OF GENERAL SIX-IN-PARALLEL SPS (STEWART) PLATFORM MANIPULATORS USING SOMA COORDINATES , 1996 .

[13]  Charles W. Wampler,et al.  Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex-Plane Formulation , 2001 .

[14]  Andrew J. Sommese,et al.  Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..

[15]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[16]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[17]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[18]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[19]  Jan Verschelde,et al.  Advances in Polynomial Continuation for Solving Problems in Kinematics , 2002 .

[20]  M.L. Husty,et al.  Self-motions of Griffis-Duffy type parallel manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[21]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[22]  Fabrice Rouillier,et al.  Solving parametric polynomial systems , 2004, J. Symb. Comput..

[23]  Anton Leykin,et al.  Newton's method with deflation for isolated singularities of polynomial systems , 2006, Theor. Comput. Sci..

[24]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..