Models for Heavy-tailed Asset Returns

Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples.

[1]  M. Sørensen,et al.  Hyperbolic Processes in Finance , 2003 .

[2]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Gareth Peters,et al.  Likelihood-Free Bayesian Inference for α-Stable Models , 2009, Comput. Stat. Data Anal..

[4]  Gareth W. Peters,et al.  Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..

[5]  Stefan Mittnik,et al.  Computing the probability density function of the stable Paretian distribution , 1999 .

[6]  Rostislav S. Protassov,et al.  EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ , 2004, Stat. Comput..

[7]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[8]  W. Stute,et al.  Bootstrap based goodness-of-fit-tests , 1993 .

[9]  Marc S. Paolella,et al.  A simple estimator for the characteristic exponent of the stable Paretian distribution , 1999 .

[10]  W. DuMouchel On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution , 1973 .

[11]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[12]  A. C. Atkinson,et al.  The Simulation of Generalized Inverse Gaussian and Hyperbolic Random Variables , 1982 .

[13]  J. Rosínski Tempering stable processes , 2007 .

[14]  J. Shuster On the Inverse Gaussian Distribution Function , 1968 .

[15]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[16]  J. Bouchaud,et al.  Scaling in Stock Market Data: Stable Laws and Beyond , 1997, cond-mat/9705087.

[17]  S. A. Sisson,et al.  Likelihood-free Bayesian inference for alpha-stable models , 2009 .

[18]  D. Karlis,et al.  Tests of fit for normal inverse Gaussian distributions , 2009 .

[19]  Marc S. Paolella Intermediate Probability: A Computational Approach , 2007 .

[20]  S. James Press,et al.  Estimation in Univariate and Multivariate Stable Distributions , 1972 .

[21]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[22]  Zhaozhi Fan,et al.  Parameter Estimation of Stable Distributions , 2006 .

[23]  Three cheers , 2005, Nature.

[24]  Marco J. Lombardi Bayesian inference for α-stable distributions: A random walk MCMC approach , 2007 .

[25]  Reiichiro Kawai,et al.  On simulation of tempered stable random variates , 2010, J. Comput. Appl. Math..

[26]  Giovanni Barone-Adesi,et al.  VaR without correlations for portfolios of derivative securities , 1999 .

[27]  W. Härdle,et al.  Nonparametric Risk Management With Generalized Hyperbolic Distributions , 2005 .

[28]  Abdelhak M. Zoubir,et al.  The stability test for symmetric alpha-stable distributions , 2005, IEEE Transactions on Signal Processing.

[29]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[30]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[31]  R. Weron Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.

[32]  P. Lee,et al.  14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .

[33]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[34]  John Dagpunar,et al.  An Easily Implemented Generalised Inverse Gaussian Generator , 1989 .

[35]  Akimichi Takemura,et al.  Goodness-of-fit tests for symmetric stable distributions—Empirical characteristic function approach , 2005 .

[36]  Marc S. Paolella Testing the stable Paretian assumption , 2001 .

[37]  V. Zolotarev One-dimensional stable distributions , 1986 .

[38]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[39]  P. D. Jongh,et al.  Risk estimation using the normal inverse Gaussian distribution , 2001 .

[40]  Rafał Weron,et al.  Computationally intensive Value at Risk calculations , 2004 .

[41]  K. Prause The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .

[42]  Olivier V. Pictet,et al.  From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets , 1997, Finance Stochastics.

[43]  J. L. Nolan,et al.  Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .

[44]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[45]  Akimichi Takemura,et al.  Some Improvements in Numerical Evaluation of Symmetric Stable Density and Its Derivatives , 2004 .

[46]  R. Weron Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach , 2006 .

[47]  Andrew Matacz,et al.  Financial Modeling and Option Theory with the Truncated Levy Process , 1997, cond-mat/9710197.

[48]  Dimitris Karlis,et al.  Bayesian estimation of NIG models via Markov chain Monte Carlo methods , 2004 .

[49]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[50]  Jon Danielsson,et al.  The Cost of Conservatism : Extreme Returns , Value-at-Risk , and the Basle ‘ Multiplication Factor ’ , 1998 .

[51]  S. Rachev,et al.  Tempered stable distributions and processes in finance: numerical analysis , 2010 .

[52]  Michael Sørensen,et al.  Stock returns and hyperbolic distributions , 1999 .

[53]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[54]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[55]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[56]  G. Samorodnitsky,et al.  Do financial returns have finite or infinite variance? A paradox and an explanation , 2010 .

[57]  J. Nolan,et al.  Maximum likelihood estimation and diagnostics for stable distributions , 2001 .

[58]  Peter Tankov,et al.  Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes , 2007 .

[59]  R. Weron Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables" , 1996 .

[60]  S. Rachev,et al.  Maximum likelihood estimation of stable Paretian models , 1999 .

[61]  Aleksander Weron,et al.  Can One See $\alpha$-Stable Variables and Processes? , 1994 .

[62]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[63]  D. Karlis An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution , 2002 .

[64]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[65]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[66]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[67]  D. Buckle Bayesian Inference for Stable Distributions , 1995 .

[68]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Ole E. Barndorff-Nielsen,et al.  Hyperbolic Distributions and Ramifications: Contributions to Theory and Application , 1981 .

[70]  Eric Renault,et al.  Estimation of Stable Distributions by Indirect Inference , 2009 .

[71]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .