Models for Heavy-tailed Asset Returns
暂无分享,去创建一个
[1] M. Sørensen,et al. Hyperbolic Processes in Finance , 2003 .
[2] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[3] Gareth Peters,et al. Likelihood-Free Bayesian Inference for α-Stable Models , 2009, Comput. Stat. Data Anal..
[4] Gareth W. Peters,et al. Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..
[5] Stefan Mittnik,et al. Computing the probability density function of the stable Paretian distribution , 1999 .
[6] Rostislav S. Protassov,et al. EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ , 2004, Stat. Comput..
[7] Marc S. Paolella,et al. Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .
[8] W. Stute,et al. Bootstrap based goodness-of-fit-tests , 1993 .
[9] Marc S. Paolella,et al. A simple estimator for the characteristic exponent of the stable Paretian distribution , 1999 .
[10] W. DuMouchel. On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution , 1973 .
[11] C. Mallows,et al. A Method for Simulating Stable Random Variables , 1976 .
[12] A. C. Atkinson,et al. The Simulation of Generalized Inverse Gaussian and Hyperbolic Random Variables , 1982 .
[13] J. Rosínski. Tempering stable processes , 2007 .
[14] J. Shuster. On the Inverse Gaussian Distribution Function , 1968 .
[15] E. Eberlein,et al. Hyperbolic distributions in finance , 1995 .
[16] J. Bouchaud,et al. Scaling in Stock Market Data: Stable Laws and Beyond , 1997, cond-mat/9705087.
[17] S. A. Sisson,et al. Likelihood-free Bayesian inference for alpha-stable models , 2009 .
[18] D. Karlis,et al. Tests of fit for normal inverse Gaussian distributions , 2009 .
[19] Marc S. Paolella. Intermediate Probability: A Computational Approach , 2007 .
[20] S. James Press,et al. Estimation in Univariate and Multivariate Stable Distributions , 1972 .
[21] E. Fama,et al. Parameter Estimates for Symmetric Stable Distributions , 1971 .
[22] Zhaozhi Fan,et al. Parameter Estimation of Stable Distributions , 2006 .
[23] Three cheers , 2005, Nature.
[24] Marco J. Lombardi. Bayesian inference for α-stable distributions: A random walk MCMC approach , 2007 .
[25] Reiichiro Kawai,et al. On simulation of tempered stable random variates , 2010, J. Comput. Appl. Math..
[26] Giovanni Barone-Adesi,et al. VaR without correlations for portfolios of derivative securities , 1999 .
[27] W. Härdle,et al. Nonparametric Risk Management With Generalized Hyperbolic Distributions , 2005 .
[28] Abdelhak M. Zoubir,et al. The stability test for symmetric alpha-stable distributions , 2005, IEEE Transactions on Signal Processing.
[29] Paul Embrechts,et al. Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.
[30] S. Rachev,et al. Stable Paretian Models in Finance , 2000 .
[31] R. Weron. Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.
[32] P. Lee,et al. 14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .
[33] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[34] John Dagpunar,et al. An Easily Implemented Generalised Inverse Gaussian Generator , 1989 .
[35] Akimichi Takemura,et al. Goodness-of-fit tests for symmetric stable distributions—Empirical characteristic function approach , 2005 .
[36] Marc S. Paolella. Testing the stable Paretian assumption , 2001 .
[37] V. Zolotarev. One-dimensional stable distributions , 1986 .
[38] Ioannis A. Koutrouvelis,et al. Regression-Type Estimation of the Parameters of Stable Laws , 1980 .
[39] P. D. Jongh,et al. Risk estimation using the normal inverse Gaussian distribution , 2001 .
[40] Rafał Weron,et al. Computationally intensive Value at Risk calculations , 2004 .
[41] K. Prause. The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .
[42] Olivier V. Pictet,et al. From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets , 1997, Finance Stochastics.
[43] J. L. Nolan,et al. Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .
[44] Stanley,et al. Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.
[45] Akimichi Takemura,et al. Some Improvements in Numerical Evaluation of Symmetric Stable Density and Its Derivatives , 2004 .
[46] R. Weron. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach , 2006 .
[47] Andrew Matacz,et al. Financial Modeling and Option Theory with the Truncated Levy Process , 1997, cond-mat/9710197.
[48] Dimitris Karlis,et al. Bayesian estimation of NIG models via Markov chain Monte Carlo methods , 2004 .
[49] Svetlana Boyarchenko,et al. OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .
[50] Jon Danielsson,et al. The Cost of Conservatism : Extreme Returns , Value-at-Risk , and the Basle ‘ Multiplication Factor ’ , 1998 .
[51] S. Rachev,et al. Tempered stable distributions and processes in finance: numerical analysis , 2010 .
[52] Michael Sørensen,et al. Stock returns and hyperbolic distributions , 1999 .
[53] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[54] E. Seneta,et al. The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .
[55] J. McCulloch,et al. Simple consistent estimators of stable distribution parameters , 1986 .
[56] G. Samorodnitsky,et al. Do financial returns have finite or infinite variance? A paradox and an explanation , 2010 .
[57] J. Nolan,et al. Maximum likelihood estimation and diagnostics for stable distributions , 2001 .
[58] Peter Tankov,et al. Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes , 2007 .
[59] R. Weron. Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables" , 1996 .
[60] S. Rachev,et al. Maximum likelihood estimation of stable Paretian models , 1999 .
[61] Aleksander Weron,et al. Can One See $\alpha$-Stable Variables and Processes? , 1994 .
[62] W. R. Schucany,et al. Generating Random Variates Using Transformations with Multiple Roots , 1976 .
[63] D. Karlis. An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution , 2002 .
[64] A. Weron,et al. Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .
[65] J. L. Nolan. Stable Distributions. Models for Heavy Tailed Data , 2001 .
[66] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[67] D. Buckle. Bayesian Inference for Stable Distributions , 1995 .
[68] Koponen,et al. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[69] Ole E. Barndorff-Nielsen,et al. Hyperbolic Distributions and Ramifications: Contributions to Theory and Application , 1981 .
[70] Eric Renault,et al. Estimation of Stable Distributions by Indirect Inference , 2009 .
[71] B. Mandlebrot. The Variation of Certain Speculative Prices , 1963 .