Automated Design Framework for Synthetic Biology Exploiting Pareto Optimality.

In this work we consider Pareto optimality for automated design in synthetic biology. We present a generalized framework based on a mixed-integer dynamic optimization formulation that, given design specifications, allows the computation of Pareto optimal sets of designs, that is, the set of best trade-offs for the metrics of interest. We show how this framework can be used for (i) forward design, that is, finding the Pareto optimal set of synthetic designs for implementation, and (ii) reverse design, that is, analyzing and inferring motifs and/or design principles of gene regulatory networks from the Pareto set of optimal circuits. Finally, we illustrate the capabilities and performance of this framework considering four case studies. In the first problem we consider the forward design of an oscillator. In the remaining problems, we illustrate how to apply the reverse design approach to find motifs for stripe formation, rapid adaption, and fold-change detection, respectively.

[1]  Benjamin L Turner,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S3 Table S1 References Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops , 2022 .

[2]  Ajay K. Ray,et al.  APPLICATIONS OF MULTIOBJECTIVE OPTIMIZATION IN CHEMICAL ENGINEERING , 2000 .

[3]  Frédéric Messine,et al.  Efficient upper and lower bounds for global mixed-integer optimal control , 2015, J. Glob. Optim..

[4]  Peter Schuster Optimization of multiple criteria: Pareto efficiency and fast heuristics should be more popular than they are , 2012, Complex..

[5]  Kai Sundmacher,et al.  Designing Biological Systems: Systems Engineering meets Synthetic Biology , 2012 .

[6]  Natalio Krasnogor,et al.  Evolving cell models for systems and synthetic biology , 2010, Systems and Synthetic Biology.

[7]  Julio R. Banga,et al.  SYNBADm: a tool for optimization-based automated design of synthetic gene circuits , 2016, Bioinform..

[8]  J R Banga,et al.  Multi-objective mixed integer strategy for the optimisation of biological networks. , 2010, IET systems biology.

[9]  Akito Taneda Multi-objective optimization for RNA design with multiple target secondary structures , 2015, BMC Bioinformatics.

[10]  M. Elowitz,et al.  Build life to understand it , 2010, Nature.

[11]  Eva Balsa-Canto,et al.  Global dynamic optimization approach to predict activation in metabolic pathways , 2014, BMC Systems Biology.

[12]  Julio R. Banga,et al.  Multicriteria global optimization for biocircuit design , 2014, BMC Systems Biology.

[13]  Julio R. Banga,et al.  Extended ant colony optimization for non-convex mixed integer nonlinear programming , 2009, Comput. Oper. Res..

[14]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[15]  Marta Cascante,et al.  Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae. , 2003, Biotechnology and bioengineering.

[16]  Harvey J. Greenberg,et al.  Reconstruction and Functional Characterization of the Human Mitochondrial Metabolic Network Based on Proteomic and Biochemical Data* , 2004, Journal of Biological Chemistry.

[17]  Uri Alon,et al.  Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems , 2013, PLoS Comput. Biol..

[18]  Pietro Liò,et al.  Multi-objective Optimisation, Sensitivity and Robustness Analysis in FBA Modelling , 2012, CMSB.

[19]  N. Barkai,et al.  The Cost of Protein Production , 2015, Cell reports.

[20]  Uri Alon,et al.  Optimal Regulatory Circuit Topologies for Fold-Change Detection. , 2017, Cell systems.

[21]  Christopher A. Voigt,et al.  Genetic circuit design automation , 2016, Science.

[22]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[23]  Julio R. Banga,et al.  Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis , 2016, PloS one.

[24]  Eva Balsa-Canto,et al.  Hybrid optimization method with general switching strategy for parameter estimation , 2008, BMC Systems Biology.

[25]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[26]  Concha Bielza,et al.  Optimizing Brain Networks Topologies Using Multi-objective Evolutionary Computation , 2011, Neuroinformatics.

[27]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[28]  D. Endy Foundations for engineering biology , 2005, Nature.

[29]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[30]  Giuseppe Nicosia,et al.  Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis. , 2013, ACS synthetic biology.

[31]  Pietro Liò,et al.  Robust design of microbial strains , 2012, Bioinform..

[32]  Rainer Breitling,et al.  Computational tools for the synthetic design of biochemical pathways , 2012, Nature Reviews Microbiology.

[33]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Ricard Solé,et al.  Phase transitions in Pareto optimal complex networks. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Chris P. Barnes,et al.  A computational method for the investigation of multistable systems and its application to genetic switches , 2016, bioRxiv.

[36]  Chris J Myers,et al.  A methodology to annotate systems biology markup language models with the synthetic biology open language. , 2014, ACS synthetic biology.

[37]  J. Stelling,et al.  Computational design tools for synthetic biology. , 2009, Current opinion in biotechnology.

[38]  Clara Higuera,et al.  Multi-Criteria Optimization of Regulation in Metabolic Networks , 2012, PloS one.

[39]  Felix Naef,et al.  Analysis of precision in chemical oscillators: implications for circadian clocks , 2013, Physical biology.

[40]  Julio R. Banga,et al.  Multi-Objective Optimization of Biological Networks for Prediction of Intracellular Fluxes , 2008, IWPACBB.

[41]  Charles Audet,et al.  Mesh adaptive direct search algorithms for mixed variable optimization , 2007, Optim. Lett..

[42]  Gonzalo Guillén-Gosálbez,et al.  Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization , 2013, BMC Systems Biology.

[43]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[44]  Costas D. Maranas,et al.  Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits , 2014, Eur. J. Oper. Res..

[45]  Giuseppe Nicosia,et al.  Pareto Optimal Design for Synthetic Biology , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[46]  U. Alon,et al.  Just-in-time transcription program in metabolic pathways , 2004, Nature Genetics.

[47]  Kalyanmoy Deb,et al.  Data mining methods for knowledge discovery in multi-objective optimization: Part B - New developments and applications , 2017, Expert Syst. Appl..

[48]  Allan Kuchinsky,et al.  The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology , 2014, Nature Biotechnology.

[49]  Julio R. Banga,et al.  Improved optimization methods for the multiobjective design of bioprocesses , 2006 .

[50]  P. I. Barton,et al.  Global methods for dynamic optimization and mixed-integer dynamic optimization , 2006 .

[51]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[52]  Paul S. Freemont,et al.  Computational design approaches and tools for synthetic biology. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[53]  Ernst Oberortner,et al.  Web-based software tool for constraint-based design specification of synthetic biological systems. , 2015, ACS synthetic biology.

[54]  G. Stan,et al.  Quantifying cellular capacity identifies gene expression designs with reduced burden , 2015, Nature Methods.

[55]  Ilias Tagkopoulos,et al.  Fast and Accurate Circuit Design Automation through Hierarchical Model Switching. , 2015, ACS synthetic biology.

[56]  Jörg Stelling,et al.  Automatic Design of Digital Synthetic Gene Circuits , 2011, PLoS Comput. Biol..

[57]  Eva Balsa-Canto,et al.  Dynamic optimization of bioprocesses: efficient and robust numerical strategies. , 2005, Journal of biotechnology.

[58]  Stephanie Forrest,et al.  Energy and time determine scaling in biological and computer designs , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  Manuel Pájaro,et al.  Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. , 2017, Journal of theoretical biology.

[60]  Herbert M. Sauro,et al.  Design and implementation of three incoherent feed-forward motif based biological concentration sensors , 2007, Systems and Synthetic Biology.

[61]  C Blomberg,et al.  Site dependent time optimization of protein synthesis with special regard to accuracy. , 1987, Journal of theoretical biology.

[62]  Alfonso Jaramillo,et al.  Genetdes: automatic design of transcriptional networks , 2007, Bioinform..

[63]  H. Halsall-Whitney,et al.  Multicriteria optimization of gluconic acid production using net flow , 2003, Bioprocess and biosystems engineering.

[64]  Ahmad S Khalil,et al.  Biological Insights from Synthetic Biology. , 2016, Integrative biology : quantitative biosciences from nano to macro.

[65]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[66]  Martyn Amos,et al.  An implementation-focussed bio/algorithmic workflow for 1 synthetic biology 2 , 2016 .

[67]  Linda R. Petzold,et al.  OPTIMAL PERFORMANCE OF THE HEAT-SHOCK GENE REGULATORY NETWORK , 2005 .

[68]  Aryeh Warmflash,et al.  Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives. , 2012, Physical biology.

[69]  Ricard V. Solé,et al.  Design principles of stripe-forming motifs: the role of positive feedback , 2014, Scientific Reports.

[70]  Jacob Beal,et al.  Accurate predictions of genetic circuit behavior from part characterization and modular composition. , 2015, ACS synthetic biology.

[71]  Antonis Papachristodoulou,et al.  Simplified mechanistic models of gene regulation for analysis and design , 2015, Journal of The Royal Society Interface.

[72]  Christodoulos A. Floudas,et al.  Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..

[73]  Iñaki Sainz de Murieta,et al.  Toward the First Data Acquisition Standard in Synthetic Biology. , 2016, ACS synthetic biology.

[74]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[75]  Kalyanmoy Deb,et al.  An integrated approach to automated innovization for discovering useful design principles: Case studies from engineering , 2014, Appl. Soft Comput..

[76]  Kalyanmoy Deb,et al.  Data mining methods for knowledge discovery in multi-objective optimization: Part A - Survey , 2017, Expert Syst. Appl..

[77]  Julio R. Banga,et al.  An evolutionary method for complex-process optimization , 2010, Comput. Oper. Res..

[78]  M M Domach,et al.  Consideration of the gain, enzymatic capacity utilization, and response time properties of metabolic networks as a function of operating point and structure. , 1985, Bio Systems.

[79]  Matthew W Lux,et al.  Genetic design automation: engineering fantasy or scientific renewal? , 2012, Trends in biotechnology.

[80]  Alfonso Jaramillo,et al.  AutoBioCAD: full biodesign automation of genetic circuits. , 2013, ACS synthetic biology.

[81]  Julio R. Banga,et al.  Model based optimization of biochemical systems using multiple objectives: a comparison of several solution strategies , 2006 .

[82]  Mauricio Barahona,et al.  Tuning the dials of Synthetic Biology , 2013, Microbiology.

[83]  Margaret J. Eppstein,et al.  Discovering Design Principles From Dominated Solutions , 2013, IEEE Access.

[84]  Juan F. Poyatos,et al.  Dynamical Principles of Two-Component Genetic Oscillators , 2006, PLoS Comput. Biol..

[85]  James Briscoe,et al.  The interpretation of morphogen gradients , 2006, Development.

[86]  Julio R. Banga,et al.  A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design , 2008, Comput. Chem. Eng..

[87]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[88]  Matthias Köppe,et al.  SBROME: a scalable optimization and module matching framework for automated biosystems design. , 2013, ACS synthetic biology.

[89]  Jason A. Papin,et al.  Metabolic Network Analysis of Pseudomonas aeruginosa during Chronic Cystic Fibrosis Lung Infection , 2010, Journal of bacteriology.

[90]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[91]  Majid Soleimani-damaneh On some multiobjective optimization problems arising in biology , 2011, Int. J. Comput. Math..

[92]  Matthias Heinemann,et al.  Synthetic biology - putting engineering into biology , 2006, Bioinform..

[93]  Sunwon Park,et al.  Multiobjective flux balancing using the NISE method for metabolic network analysis , 2009, Biotechnology progress.

[94]  Richard F. Betzel,et al.  Exploring the Morphospace of Communication Efficiency in Complex Networks , 2013, PloS one.

[95]  Majid Soleimani-damaneh An optimization modelling for string selection in molecular biology using Pareto optimality , 2011 .

[96]  Baojun Wang,et al.  Recognizing and engineering digital-like logic gates and switches in gene regulatory networks. , 2016, Current opinion in microbiology.

[97]  Madhukar S. Dasika,et al.  OptCircuit: An optimization based method for computational design of genetic circuits , 2008, BMC Systems Biology.

[98]  Andrew Phillips,et al.  Towards programming languages for genetic engineering of living cells , 2009, Journal of The Royal Society Interface.

[99]  Pietro Liò,et al.  Pareto Optimality in Organelle Energy Metabolism Analysis , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[100]  Xia Sheng,et al.  Bayesian design of synthetic biological systems , 2011, Proceedings of the National Academy of Sciences.

[101]  Claudio Angione,et al.  Predictive analytics of environmental adaptability in multi-omic network models , 2015, Scientific Reports.

[102]  Uriel Feige,et al.  Heuristic for maximizing DNA reuse in synthetic DNA library assembly. , 2014, ACS synthetic biology.

[103]  Joshua D. Knowles,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[104]  Klaus Schittkowski,et al.  A trust region SQP algorithm for mixed-integer nonlinear programming , 2007, Optim. Lett..

[105]  O Shoval,et al.  Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space , 2012, Science.

[106]  Rajan P Kulkarni,et al.  Tunability and Noise Dependence in Differentiation Dynamics , 2007, Science.

[107]  Matthew R. Pocock,et al.  Data Integration and Mining for Synthetic Biology Design. , 2016, ACS synthetic biology.

[108]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[109]  Gilberto Reynoso-Meza,et al.  Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case , 2016, BMC Systems Biology.